Linguistics

A dynamic alternative-pruning account of asymmetries in Hurford Disjunctions

Adèle Hénot-Mortier (MIT)

Puzzle

Hurford Disjunctions (HD) are of the form $p \vee q$ where $p \Rightarrow q$ and are generally deemed infelicitous [1]: \#John lives in Paris or France. This is known as Hurford's constraint (HC). Singh [6] however, noticed that HDs involving scalemates are subject to an asymmetry: a weak-to-strong scalar HD is felicitous (1a), while a strong-to-weak one is not (1b).
(1) a. John ate some or all of the cookies. b. \# John ate all or some of the cookies.
> Since the asymmetry arises in the presence of scalar items, it must result from an interplay between scalar implicatures (SI) and Hurford's constraint.

Background on exhaustification

The grammatical view of SIs ([5], [7], [8]) posits that the covert exhaustivity operator Exh ($\simeq o n l y$), is merged in the syntax. Exh takes a proposition p and a set of alternatives to $p \mathcal{A}_{p},{ }^{1}$ and returns the conjunction of p with the negation of strictly stronger alternatives. ${ }^{2}$
$\operatorname{Exн}\left(p, \mathcal{A}_{p}\right)=p \wedge \bigwedge\left\{\neg q \mid q \in \mathcal{A}_{p} \wedge q \Rightarrow p \wedge q \nLeftarrow p\right\}$
This view is promising since it allows to exhaustify within the weak disjunct - which may rescue the whole structure from HC-violation. For instance, given that all (\forall) is an alternative to some (\exists), (1a) would yield $\operatorname{Exh}(\exists,\{\forall\}) \vee \forall=(\exists \wedge \neg \forall) \vee \forall$, which is HC-compliant (exclusive disjuncts). However, the asymmetry remains, since (1b) would be rescued by Exh as well!

- Exh must be made asymmetric somehow.

Previous accounts

Fox and Spector (F\&S) postulated that Exh should not be inserted whenever it is Incrementally Weakening (IW), i.e. when it leads to a weaker meaning of the whole sentence, for any continuation thereof [9].

This captures (1) (and also (3) and (4)!', but at the cost of positing a quite complex and global principle.
Tomioka, building on Rooth [4], proposed that HC was a matter of contrastive focus between two (scalar) items [10]. This correctly predicts that the asymmetry extends to other contrastive environments, e.g. but-statements (2). However, replacing but by or in (2) makes the asymmetry vanish, suggesting that HC cannot be reduced to a formal constraint between scalemates, but really is about the logical relation between disjuncts!
(2) a. Adam did some of the homework, but, /or $\boldsymbol{N}_{\mathcal{J}}$ Bill did all of it.
b. Adam did all of the homework but\#/or ${ }_{\boldsymbol{\wedge}}$ Bill did some of it.

Capturing the basic asymmetry via alternative pruning

The key novelty of our account is that the set of alternatives to p, \mathcal{A}_{p}, is made sensitive to preceding elements. Let R contain a focused scalar item. We assume with Rooth [4] that R has an ordinary semantic value $\llbracket R \rrbracket_{o}$, and a focus semantic value $\llbracket R \rrbracket_{f}$, defined as the set of propositions identical to $\llbracket R \rrbracket_{o}$, except that the focused element is replaced by a salient alternative that is at most as complex. The set of alternatives to R is:

$$
\mathcal{A}_{R}=\left\{\begin{array}{l}
\llbracket R \rrbracket_{f} \backslash \llbracket L \rrbracket_{o} \text { if } \exists L \prec_{\mathcal{L}} R . \llbracket R \rrbracket_{f}=\llbracket L \rrbracket_{f} \\
\llbracket R \rrbracket_{f} \text { otherwise }
\end{array}\right.
$$

Dynamic Alternative Pruning (DAP)
Where $\prec_{\mathcal{L}}$ represents local linear precedence within a disjunctive statement. Following [10], we call L the contrast antecedent (CE) of R. In (1a), applying Exh to the 1st disjunct ($L=\exists$) yields $\exists \wedge \neg \forall$, because L has no CE. The 2 disjuncts become exclusive and (1a) is rescued. In (1b), the 2nd disjunct ($R=\exists$) has the CE $L=\forall$, which is then pruned from \mathcal{A}_{R}. Exн becomes idle, and (1b) remains HC-violating. This can be generalized to other scalar HDs, such as $(p \vee q) \vee(p \wedge q)$.

Cases of HC-obviation

F\&S noticed that the asymmetry vanishes in various cases, whereby both orders are fine (HC -obviation).

1. Distant entailing disjuncts. When the 2 scalar items are separated by a salient alternative, the strong-to-weak order appears felicitous (3).
(3) Context: did John do most (M) of the homework? John did all or some of the homework. $\quad \forall \vee \exists$

Our account rescues (3). Indeed, $\mathcal{A}_{\exists}=\{\mathrm{M}, \forall\} \backslash\{\forall\}=$ $\{\mathrm{M}\}$ by DAP. Thus, $\operatorname{Exh}\left(\exists, \mathcal{A}_{\exists}\right)=\exists \wedge \neg \mathrm{M} \nLeftarrow \forall$.
2. Universally quantified disjuncts. HC-obviation also occurs when the items are embedded under \square (4) or \forall.
(4) a. John must solve HW1 or HW2, or he must solve both. $\operatorname{ExH}(\underbrace{\square\left(p_{1} \vee p_{2}\right)}_{L}) \vee \underbrace{\square\left(p_{1} \wedge p_{2}\right)}_{R}$
b. John must solve HW1 and HW2, or he must solve either. \qquad $\vee \operatorname{Exh}(\underbrace{\square}$ \qquad In (4a), $\mathcal{A}_{L}=\left\{\square p_{1}, \square p_{2}, \square\left(p_{1} \wedge p_{2}\right)\right\} . \square p_{1}$ and $\square p_{2}$ being the only 2 stronger alternatives, Exн yields $\neg \square p_{1} \wedge$ $\neg \square p_{2}$, contradicting R. In (4b), $\mathcal{A}_{R}=\left\{\square p_{1}, \square p_{2}\right\}$, since $L=\square\left(p_{1} \wedge p_{2}\right)$ is pruned. However, this does not affect Exh, which again yields $\neg \square p_{1} \wedge \neg \square p_{2}$, contradicting L ! 3. Scalar long-distance HDs (LDHDs). In LDHDs [11], the strong item occurs in a lower-level disjunction. Non-scalar LDHDs are deemed infelicitous: \#John lives in France, or in Paris or London. (5) compiles scalar LDHDs arranged in various linear orders. ${ }^{3}$
(5) a. John ate most of the cookies, or (else) he ate none or all of them. $\quad \mathrm{M} \vee(\neg \exists \vee \forall)$ b. John ate most of the cookies, or (else) he ate all or none of them. $\quad \mathrm{M} \vee(\forall \vee \neg \exists)$
c. ?John ate none or all of the cookies, or (else) he ate most of them. $\quad(\neg \exists \vee \forall) \vee \mathrm{M}$
d. John ate all or none of the cookies, or (else) he ate most of them. $\quad(\forall \vee \neg \exists) \vee \mathrm{M}$

Surprisingly, sentences in (5) sound fine! ${ }^{4}$ This is pre dicted by our account: since DAP searches CEs locally, at the level of each \vee, no relevant CE can be found in (5), which leads to standard exhaustification across the board. We thus have (5) $=\operatorname{Exh}(\mathrm{M},\{\exists, \forall\}) \vee(\neg \exists \vee \forall)$ $=(\mathrm{M} \wedge \neg \forall) \vee(\neg \exists \vee \forall)$, i.e., 2 exclusive disjuncts. F\&S's account on the other hand, rescues (5a) and (5b), but bans (5c) and (5d), where Exh is IW, because: $(\neg \exists \vee$ $\forall) \vee(\mathrm{M} \wedge \neg \forall)=(\neg \exists \vee \forall) \vee \mathrm{M} \wedge \top=(\neg \exists \vee \forall) \vee \mathrm{M}$.

Conclusion

We accounted for Singh's asymmetry by proposing that formal alternatives are being dynamically pruned. DAP constitutes an incremental, local, and, unlike previous accounts, one-pass algorithm, which does just as well for a variety of HDs, and makes interesting predictions in the case of LDHDs. Further (experimental?) evidence would be welcome to assess the accuracy of DAP vs F\&S's account in that respect. However, DAP, being too local, cannot capture a case of HC -obviation triggered by embedding an entire scalar HD under Exh (6). It appears difficult to modify DAP to capture that, without having to posit some global constraint akin to IW...
(6) John must do all or some of the readings. $\operatorname{Exh}(\square(\forall \vee \operatorname{Exh}(\exists)))$

Selected references

Alternatives may be determined via a lexically encoded "scale" [2], focus [4], or a specific question-under-discussion [3]. quires the notion of InNocent Exclusion, which guarantees that the stronger alternatives are negated in a non-arbitrary way [5].
3 We tried to eliminate a trividity issue in (5) We tried to eliminate a triviality issue in (5)
by using most instead of e.g. some as a weak by using to
scalemate.
haps because of thr shaky, perdissunction, causing parsing difff culties. But we think the contrast with (infelicitous) non-scalar LDHDs is sensible. The "?" on (5c) requires further investigation, as it may result from the availability
of the alternative parse $\neg \exists v$ ($\forall \vee$ of the alternative parse $\neg \exists \vee \vee(\forall \vee$
$M)$, that DAP deems infelicitous.

