Linguistics

Research question

Numerical approximation expressions, such as around n and between x and y, convey some degree of uncertainty about an exact numerical value. As Ex. (1) shows, around n and between x and y sound roughly equivalent for well-adjusted values of n, x and y
(1) a. Around 20 people came to the party.
b. Between 15 and 25 people came to the party.

Those expressions however, differ in two points: (1) Around emphasizes a "central" value while between emphasizes upper and lower bounds; ${ }^{1}$ (2) around seems more felicitous than between in a context where the exact number is known but there is no pressure to be precise. This suggests that around is vague in a sense that between is not. We devise a Bayesian model of those two approximators, which predicts that around conveys some extra information about the distribution of possible numbers, which causes the posterior (computed upon hearing around n) to be more "peaked" than the prior. We verify this prediction by con ducting an online experiment on Amazon Mechanical Turk.

Basic semantics of around and between
We define a basic, non-probabilistic semantics for around and between, understood as generalized quantifiers
\llbracket between x and $\mathrm{y} \rrbracket(P)(Q)=\left|\iota_{\text {Max }} X . P(X) \wedge Q(X)\right| \in[x ; y]$ (1) Eq. (1) says that the maximum plurality verifying both the restrictor and nuclear scope (let us call this plurality the witness), has its cardinal included in $[x ; y]$. Ex. (1b) then means that the maximum plurality of people who came to the party has k members, with $k \in[x ; y]$. We now define an entry for around n, inspired from that of gradable adjectives (Kennedy, 2007):

$$
\llbracket \text { around } n \rrbracket(P)(Q)=|\iota \operatorname{Max} X . P(X) \wedge Q(X)| \in[n \pm i]
$$

$$
=\llbracket \text { between } n-i \text { and } n+i \rrbracket(P)(Q)
$$

Eq. (2) says that the size of the witness is included in an interval centered on n and of total size $2 i+1$. We take i to be a free variable, which depends on the order of magnitude of $n,{ }^{2}$ its granularity, and the preciseness of the QUD. ${ }^{3}$ The crucial difference between around and between is taken to be this free variable i, that the listener has to guess, along with the exact number. This makes around inherently vague and motivates a Bayesian ana-
lysis of numerical approximators, in the spirit of (Lassiter and Goodman, 2013; Qing and Franke, 2015; Bergen et al., 2016).

A simple Bayesian Model of numerical

 approximation and its predictionWe consider a conversation focused on a specific QUD, e.g How many people came to the party? The speaker \mathcal{S} (resp. the lis tener \mathcal{L}) has a prior distribution $\mathcal{P}_{\mathcal{S}}$ (resp. $\mathcal{P}_{\mathcal{L}}$) on exact numerica values that constitute best answers to the QUD. \mathcal{S} tries to com municate $\mathcal{P}_{\mathcal{S}}$ to \mathcal{L}, by uttering either around n or between x and y Egré et al., 2020). Optimal values for n or x and y are obtained by making the assumption that \mathcal{L} updates $\mathcal{P}_{\mathcal{L}}$ in a Bayesian way Between-update. We assume that it is uniform and rules out the values that are not in $[x ; y]$. All numbers within $[x ; y]$ become equally more probable, i.e. sheer uncertainty is being conveyed:
$\mathcal{P}_{\mathcal{L}}[k \mid$ between x and y$] \propto \begin{cases}\mathcal{P}_{\mathcal{L}}[k] & \text { if } k \in[x ; y] \\ 0 & \text { if } k \notin[x ; y]\end{cases}$
Around-update. Recall Eq. (2) which states that around n is equivalent to between n-i and $n+i$ for a given i. Since \mathcal{L} is not cerain of the i that \mathcal{S} is using (\mathcal{S} might not be either!), the aroundupdate amounts to marginalizing on all possible $[n \pm i]$ intervals (for simplicity we assume here that those are equiprobable).
$\mathcal{P}_{\mathcal{L}}[k \mid$ around $n] \propto \sum \mathcal{P}_{\mathcal{L}}[k \mid$ between $n-i$ and $n+i]$

$$
\begin{equation*}
\propto \sum_{i=|n-k|}^{n} \frac{\mathcal{P}_{\mathcal{L}}[k]}{\sum_{j=n-i}^{n+i} \mathcal{P}_{\mathcal{L}}[j]} \tag{4}
\end{equation*}
$$

This update does not redistribute the probabilistic mass from the prior distribution equally among the possible numbers. This sug gests that around, unlike between, conveys some extra informa fion about what \mathcal{S} thinks the most probable values are (Egré et al., 2020). More specifically, it can be shown that the around update systematically gives more mass to values that are closer o n. Let k, k^{\prime} be s.t. $|n-k|<\left|n-k^{\prime}\right|$:
$\frac{\mathcal{P}_{\mathcal{L}}[k \mid \text { around } \mathrm{n}]}{\mathcal{P}_{\mathcal{L}}\left[k^{\prime} \mid \text { around } n\right]} \geq \frac{\mathcal{P}_{\mathcal{L}}[k]}{\mathcal{P}_{\mathcal{L}}\left[k^{\prime}\right]}=\frac{\mathcal{P}_{\mathcal{L}}[k \mid \text { between } \mathrm{x} \text { and } \mathrm{y}]}{\mathcal{P}_{\mathcal{L}}\left[k^{\prime} \mid \text { between } \mathrm{x} \text { and } \mathrm{y}\right]}$

Experiment

Design. We conducted an online experiment inspired from Channell, 1994) on 145 participants to test Eq. (5). The goa was to elicit posteriors for around n and between x and y, for each
participant (within-subject design). Given a certain value of n, x and y were determined as a function of the participant's answer to the around n stimulus, s.t. the elicited around- and betweendistributions form near-minimal pairs. For each participant, two ratios similar to those in Eq. (5) were computed from the elicited distributions. ${ }^{5}$ The hypothesis was that, for a given participant, the around-ratio should be higher than the between-ratio

Task. During the Interval task (Fig. (1a)), the participant was presented with a sentence of the form Around n / Between x and y people came to the party ($n=40$, 50 or 60 , randomized across participants) and was asked to give the interval within which the exact value should be. The first Interval task was testing around n, and the bounds returned by the participant for this task would be subsequently used as the x and y values in be-

Figure 1 . Screen captures of the two
tasks (n randomly set to 60) tween x and y. This ensured that each participant was tested on approximation expressions that were, in their opinion, optimally close in meaning. During the Histogram task (Fig. (1b)), the participant had to assign weights to each number within the interval they had given in the Interval task. The weights were supposed to reflect the "likelihood" of each number.

Screen	Expression	Task	Expected output
1	Around 50	Interval	$[a ; b]$ with $a \leq 50 \leq b$
2	Around 50	Histogram	$\mathcal{P}[k]$ around 50$]$
3	Between a and b	Interval	$[c ; d]$ with $c=a, d=b$
4	Between a and b	Histogram	$\mathcal{P}_{\mathcal{L}}[k \mid$ between a and $b]$

Results \& Discussion

Results. We performed a Sign test on the pairs of ratios ob tained for each participant, which proved significant ($p=4.99 \times$ 10^{-8}). The effect was of medium size (Cohen's $d=0.497$), and Bonferroni-corrected Wilcoxon tests performed on each num ber group confirmed its significance. This suggests that the hy pothesis according to which an around-update moves the prob-
ability mass towards central values more than a between-update does, cannot be rejected
Discussion. The result is encouraging but the design suffers from one major flaw, namely, the absence of randomization in the order of presentation of around vs between. Since the x and y values of the between x and y expression presented to the par ticipant were determined during the Interval task of around, this task had to appear before the Interval task of between. This limit of the design may be the cause of non-counterbalanced order effects. A solution may be to reorder the trials from Tab. (1) in the following way: start with screens 1 and 3 (Interval tasks) in that order, to determine x and y. Then, present screen 2 and (the most critical Histogram tasks) in a randomized order. ${ }^{\text {b }}$

Conclusion

We devised a Bayesian model of around and between, which makes a clear prediction about the effect of those expression on the distribution of possible number values. Between x and conveys sheer uncertainty about the numbers within its bounds, which leads to a "uniform" update. Surprisingly perhaps, around n ends up communicating useful information about which values should be seen as the most probable (namely, those closer to n). This prediction is in line with the claim that using vagueness can be rational under uncertainty (Frazee and Beaver, 2010). We conducted an experiment which confirmed this claim, despit one caveat (order effects), that we are currently trying to fix

Selected references
Relatedly, ar
iween is not.

usually increases with the value of n. See (Égré perhaps linked to a romust observation made in perthaps inked to a robust observation made in
the feld of numerical cognition (Dehaene, 2003
ial in suport of a logarithmic reperesentation i.a), in support of a log.
of the numerical scale.
of the numerical scale
usually increases with the coarseness of n,
odulated by the (Cummins etal, 2012) fora a related e exampl. eand experimental evidence supporting this claim.
The equality hold for for x and y s.t. $x \leq k, k^{\prime} \leq y$, I.e. s.t. Case 1. of Eq. (3) applies to k and k^{\prime}. each appreximator bbyaveraging tomperatios or ob-
tained for all possible pairs $\left(k, k^{\prime}\right)(1)$ s.t. $\mid n-$
 $k\left|<\left|n-k^{\prime}\right|\right.$ ' (2) present in the support of both
the around and the between-clistribution, and
(3) not made salient by the experimental design (i.e, different satient by the expe

Wee thank Athuly Aravind for this very clever suggestion, that we are currently implementing
in a follow-up experiment.

