Flavors of oddness

Adèle Hénot-Mortier November 19, 2025

UCL Linguistics Seminar talk

- Sentences can feel "off" for many reasons, stemming from syntax, semantics or pragmatics.
- (1) * Ed told Jo that he likes herself.
- (2) a. # It's raining and it's not raining
 - b. # It's raining or it's **not** raining.
- (3) a. # A sun is shining.
 - b. ?? Jo fed **her pet alligator**.

Principle A violation

Contradiction

Tautology

Presupposing too little

Presupposing too much²

¹Heim. 1991

²Strawson, 1950; Stalnaker, 1974, 1978, i.a.

 Sentences can feel "off" for many reasons, stemming from syntax, semantics or pragmatics.

(1) * Ed told Jo that he likes herself . Pr	inciple A violation
--	---------------------

- (2) a. # It's raining and it's **not** raining.
 - b. # It's raining or it's **not** raining.
- (3) a. # A sun is shining.
 - b. ?? Jo fed **her pet alligator**.

Controdiction

Tautology

Presupposing too little

Presupposing too much²

¹Heim. 1991

²Strawson, 1950; Stalnaker, 1974, 1978, i.a

 Sentences can feel "off" for many reasons, stemming from syntax, semantics or pragmatics.

- (1) * Ed told Jo that he likes herself.
- (2) a. # It's raining and it's **not** raining.
 - b. # It's raining or it's **not** raining.
- (3) a. # A sun is shining.
 - b. ?? Jo fed **her pet alligator**.

Principle A violation

Contradiction

Tautology

Presupposing too much

¹Hoim 1991

²Strawson, 1950; Stalnaker, 1974, 1978, i.a

 Sentences can feel "off" for many reasons, stemming from syntax, semantics or pragmatics.

(1)	* Ed told Jo that he likes herself .	Principle
-----	---	-----------

- (2) a. # It's raining and it's **not** raining.
 - b. # It's raining or it's **not** raining.
- (3) a. # A sun is shining.
 - b. ?? Jo fed **her pet alligator**.

Principle A violation

Contradiction

Tautology

Presupposing too little¹

Presupposing too much²

¹Heim, 1991.

²Strawson, 1950; Stalnaker, 1974, 1978, i.a.

 Sentences can feel "off" for many reasons, stemming from syntax, semantics or pragmatics.

(1) * Ed told Jo that he likes herself .	Principle A violation
---	-----------------------

- (2) a. #It's raining and it's **not** raining. Contradiction
 - b. # It's raining or it's **not** raining. Tautology
- (3) a. # A sun is shining. Presupposing too little¹
 b. ?? Jo fed her pet alligator. Presupposing too much²

¹Heim, 1991.

²Strawson, 1950; Stalnaker, 1974, 1978, i.a.

- Sentences sometimes feel odd despite being informative, and perfectly "reasonable" is terms of what they implicitly assume.
- (4) Hurford Disjunction (HD; Hurford 1974)# Jo studied in Paris or in France.Conveys: Jo studied in France.
- Descriptively, (4) seems to be odd because one disjunct (Paris) contextually entails the other (France).
- Oddness seems to come from how information is provided, rather than from its content.

- Sentences sometimes feel odd despite being informative, and perfectly "reasonable" is terms of what they implicitly assume.
- (4) Hurford Disjunction (HD; Hurford 1974)# Jo studied in Paris or in France.Conveys: Jo studied in France.
- Descriptively, (4) seems to be odd because one disjunct (Paris) contextually entails the other (France).
- Oddness seems to come from how information is provided, rather than from its content.

- Sentences sometimes feel odd despite being informative, and perfectly "reasonable" is terms of what they implicitly assume.
- (4) Hurford Disjunction (HD; Hurford 1974)# Jo studied in Paris or in France.Conveys: Jo studied in France.
- Descriptively, (4) seems to be odd because one disjunct (Paris) contextually entails the other (France).
- Oddness seems to come from how information is provided, rather than from its content.

- Sentences sometimes feel odd despite being informative, and perfectly "reasonable" is terms of what they implicitly assume.
- (4) Hurford Disjunction (HD; Hurford 1974)# Jo studied in Paris or in France.Conveys: Jo studied in France.
- Descriptively, (4) seems to be odd because one disjunct (Paris) contextually entails the other (France).
- Oddness seems to come from how information is provided, rather than from its content.

- (4) # Jo studied in Paris or in France.
- A prominent approach to sentences like (4) is based on the concept of REDUNDANCY-Be Brief!³
- Both of (4)'s disjuncts entail that Jo studied in France. In fact, the entire disjunction is contextually equivalent to (5), obtained by deleting (4)'s first disjunct!
- (5) Jo studied in Paris or in France
- (6) Non-Redundancy. A felicitous sentence should not be equivalent to one of its formal simplifications.⁴

³Grice, 1975; Horn, 1984; Meyer, 2013; Katzir and Singh, 2014; Mayr and Romoli, 2016; Kalomoiros, 2024, i.a.

⁴Obtained by constituent-to-subconstituent substitutions, à la Katzir (2007)

- (4) # Jo studied in Paris or in France.
- A prominent approach to sentences like (4) is based on the concept of REDUNDANCY-Be Brief!³
- Both of (4)'s disjuncts entail that Jo studied in France. In fact, the entire disjunction is contextually equivalent to (5), obtained by deleting (4)'s first disjunct!
- (5) Jo studied in Paris or in France
- (6) **NON-REDUNDANCY**. A felicitous sentence should not be equivalent to one of its formal simplifications.⁴

³Grice, 1975; Horn, 1984; Meyer, 2013; Katzir and Singh, 2014; Mayr and Romoli, 2016; Kalomoiros, 2024, i.a.

Obtained by constituent-to-subconstituent substitutions, à la Katzir (2007)

- (4) # Jo studied in Paris or in France.
- A prominent approach to sentences like (4) is based on the concept of REDUNDANCY-Be Brief!³
- Both of (4)'s disjuncts entail that *Jo studied in France*. In fact, the entire disjunction is contextually **equivalent** to (5), obtained by **deleting** (4)'s first disjunct!
- (5) Jo studied in Paris or in France.
- (6) **NON-REDUNDANCY**. A felicitous sentence should not be equivalent to one of its formal simplifications.⁴

³Grice, 1975; Horn, 1984; Meyer, 2013; Katzir and Singh, 2014; Mayr and Romoli, 2016; Kalomoiros, 2024, i.a.

⁴Obtained by constituent-to-subconstituent substitutions, à la Katzir (2007)

- (4) # Jo studied in Paris or in France.
- A prominent approach to sentences like (4) is based on the concept of REDUNDANCY-Be Brief!³
- Both of (4)'s disjuncts entail that *Jo studied in France*. In fact, the entire disjunction is contextually **equivalent** to (5), obtained by **deleting** (4)'s first disjunct!
- (5) Jo studied in Paris or in France.
- (6) **NON-REDUNDANCY**. A felicitous sentence should not be equivalent to one of its formal simplifications.⁴

³Grice, 1975; Horn, 1984; Meyer, 2013; Katzir and Singh, 2014; Mayr and Romoli, 2016; Kalomoiros, 2024, i.a.

⁴Obtained by constituent-to-subconstituent substitutions, à la Katzir (2007).

Challenge 1: compatible Hurford Disjunctions

- Problem for Non-Redundancy: oddness arises despite the non-existence of a simpler, equally informative alternative.
- (7) "Compatible" Hurford Disjunction (cHD; Singh 2008)?? Jo studied in France or the Basque country.Conveys: Jo studied in France or the Spanish Basque country.

- Logically isomorphic sentences may contrast in terms of oddness.
- (8) Hurford Conditionals (HC; Mandelkern and Romoli 2018)
 - a. If Jo studied in France, she did not study in Paris. $p \rightarrow \neg p^+$ where $p^+ \models p$
 - b. # If Jo did **not** study in **Paris**, she studied in **France**. $\neg p^+ \rightarrow p \equiv \underbrace{(\neg p^+)}_{q} \rightarrow \neg \underbrace{(\neg p)}_{q^+} \text{ where } q^+ \models q$
- This is unexpected under a Non-REDUNDANCY view, which is based on the deletion of logically useless material.
- Kalomoiros (2024) recently proposed an account of both HDs and HCs based on a more sophisticated formalization of NON-REDUNDANCY, but still cannot cover the case of cHDs like (7)

- Logically isomorphic sentences may contrast in terms of oddness.
- (8) Hurford Conditionals (HC; Mandelkern and Romoli 2018)
 - a. If Jo studied in France, she did not study in Paris. $p \to \neg p^+$ where $p^+ \models p$
 - b. # If Jo did **not** study in **Paris**, she studied in **France**. $\neg p^+ \to p \equiv \underbrace{(\neg p^+)}_{q} \to \neg \underbrace{(\neg p)}_{q^+} \text{ where } q^+ \vDash q$
 - This is unexpected under a Non-REDUNDANCY view, which is based on the deletion of logically useless material.
- Kalomoiros (2024) recently proposed an account of both HDs and HCs based on a more sophisticated formalization of NON-REDUNDANCY, but still cannot cover the case of cHDs like (7)

- Logically isomorphic sentences may contrast in terms of oddness.
- (8) Hurford Conditionals (HC; Mandelkern and Romoli 2018)
 - a. If Jo studied in France, she did not study in Paris. $p \rightarrow \neg p^+$ where $p^+ \models p$
 - b. # If Jo did **not** study in Paris, she studied in France. $\neg p^+ \to p \equiv \underbrace{(\neg p^+)}_{q} \to \neg \underbrace{(\neg p)}_{q^+} \text{ where } q^+ \vDash q$
- This is unexpected under a Non-REDUNDANCY view, which is based on the deletion of logically useless material.
- Kalomoiros (2024) recently proposed an account of both HDs and HCs based on a more sophisticated formalization of Non-Redundancy, but still cannot cover the case of cHDs like (7)

- Logically isomorphic sentences may contrast in terms of oddness.
- (8) Hurford Conditionals (HC; Mandelkern and Romoli 2018)
 - a. If Jo studied in France, she did not study in Paris. $p \rightarrow \neg p^+$ where $p^+ \models p$
 - b. # If Jo did **not** study in Paris, she studied in France. $\neg p^+ \to p \equiv \underbrace{(\neg p^+)}_{q} \to \neg \underbrace{(\neg p)}_{q^+} \text{ where } q^+ \vDash q$
- This is unexpected under a Non-REDUNDANCY view, which is based on the deletion of logically useless material.
- Kalomoiros (2024) recently proposed an account of both HDs and HCs based on a more sophisticated formalization of Non-Redundancy, but still cannot cover the case of cHDs like (7).

- Logically isomorphic sentences may contrast in terms of oddness.
- (8) Hurford Conditionals (HC; Mandelkern and Romoli 2018)
 - a. If Jo studied in France, she did not study in Paris. $p \rightarrow \neg p^+$ where $p^+ \models p$
 - b. # If Jo did **not** study in Paris, she studied in France. $\neg p^+ \to p \equiv \underbrace{(\neg p^+)}_{q} \to \neg \underbrace{(\neg p)}_{q^+} \text{ where } q^+ \vDash q$
- This is unexpected under a Non-REDUNDANCY view, which is based on the deletion of logically useless material.
- Kalomoiros (2024) recently proposed an account of both HDs and HCs based on a more sophisticated formalization of NON-REDUNDANCY, but still cannot cover the case of cHDs like (7).

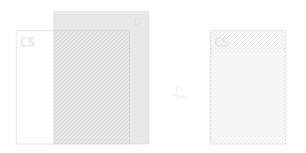
Flavors of Oddness

- I will argue that HDs, HCs, and cHDs, display **different flavors of oddness**.
- Nevertheless, I will show that all three cases can be reduced to a core, common issue: the odd variants are not addressing "good" questions.
 - With HDs (#Paris or France), the questions will be deemed REDUNDANT.
 - With HCs (#If not Paris then France), the questions will be deemed IRRELEVANT.
 - With cHDs (#France or Basque country), there will just be no well-formed question to begin with.
- Relocating oddness issues to the domain of addressed questions allows to cover all three cases (and more!) within the same unified framework, while still cashing how they "feel" distinctly odd.

Plan for today

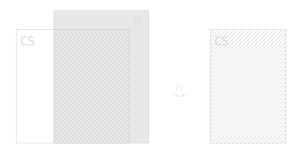
- 1. Background on assertions and questions
- 2. Overview of the framework: pragmatically constraining implicit questions
- 3. HDs evoke "redundant" implicit questions
- 4. HCs evoke "irrelevant" implicit questions
- 5. cHDs evoke "non-questions" featuring irreconcilable specificity levels
- Future directions: repairing bad questions makes for good sentences

Background on assertions and questions


- · Assertions typically denotes propositions (sets of worlds).
- The set of worlds compatible with the premises of a conversation is called Context Set (CS).⁵
- · Assertions update the CS by intersection.⁶

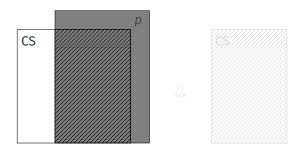
⁵Stalnakor 1978

⁶Stalnaker 1978: Heim 1982 1983a 1983h i a


- · Assertions typically denotes propositions (sets of worlds).
- The set of worlds compatible with the premises of a conversation is called Context Set (CS).⁵
- Assertions update the CS by intersection.⁶

⁵Stalnaker, 1978.

⁶Stalnaker 1978: Heim 1982 1983a 1983h i a


- · Assertions typically denotes propositions (sets of worlds).
- The set of worlds compatible with the premises of a conversation is called Context Set (CS).⁵
- · Assertions update the CS by intersection.⁶

⁵Stalnaker, 1978.

⁶Stalnaker, 1978; Heim, 1982, 1983a, 1983b, i.a.

- · Assertions typically denotes propositions (sets of worlds).
- The set of worlds compatible with the premises of a conversation is called Context Set (CS).⁵
- · Assertions update the CS by intersection.6

⁵Stalnaker, 1978.

⁶Stalnaker, 1978; Heim, 1982, 1983a, 1983b, i.a.

- · Assertions typically denotes propositions (sets of worlds).
- The set of worlds compatible with the premises of a conversation is called Context Set (CS).⁵
- · Assertions update the CS by intersection.6

⁵Stalnaker, 1978.

⁶Stalnaker, 1978; Heim, 1982, 1983a, 1983b, i.a.

- Questions have been traditionally understood as the set of their possible answers, or "alternatives".
- Alternatives are not necessarily exclusive: if Ed and Al did the readings then Ed did the readings.
- · Stronger alternatives, intuitively correspond to "better" answers.
- Given that questions are sets of propositions, how are they supposed to affect the CS?

⁷Hamblin, 1973; Karttunen, 1977.

- Questions have been traditionally understood as the set of their possible answers, or "alternatives".
- Alternatives are not necessarily exclusive: if Ed and Al did the readings then Ed did the readings.
- Stronger alternatives, intuitively correspond to "better" answers.
- Given that questions are sets of propositions, how are they supposed to affect the CS?

⁷Hamblin, 1973; Karttunen, 1977.

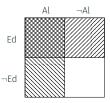
- Questions have been traditionally understood as the set of their possible answers, or "alternatives".
- (9) [Who did the readings?] = {Ed, Al, Ed and Al, ...}
- Alternatives are not necessarily exclusive: if Ed and Al did the readings then Ed did the readings.
- Stronger alternatives, intuitively correspond to "better" answers.
- Given that questions are sets of propositions, how are they supposed to affect the CS?

⁷Hamblin, 1973; Karttunen, 1977.

- Questions have been traditionally understood as the set of their possible answers, or "alternatives".
- Alternatives are not necessarily exclusive: if Ed and Al did the readings then Ed did the readings.
- Stronger alternatives, intuitively correspond to "better" answers.
- Given that questions are sets of propositions, how are they supposed to affect the CS?

⁷Hamblin, 1973; Karttunen, 1977.

- Questions induce a **partition of the CS**, i.e. a set of non-empty, disjoint subsets of the CS which together cover it.
- To get that partition, we just group together the worlds of the CS that agree on all of the question's alternatives.⁸

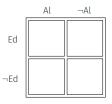

- The resulting groups are called **cells**: they tell us which distinctions "matter"
- I will consider exhaustive and mutually exclusive alternatives,
 s.t. question semantics and question pragmatics in fact coincide

- Questions induce a **partition of the CS**, i.e. a set of non-empty, disjoint subsets of the CS which together cover it.
- To get that partition, we just group together the worlds of the CS that agree on all of the question's alternatives.⁸

- The resulting groups are called **cells**: they tell us which distinctions "matter".
- I will consider exhaustive and mutually exclusive alternatives,
 s.t. question semantics and question pragmatics in fact coincide

⁸Groenendijk and Stokhof, 1984.

- Questions induce a **partition of the CS**, i.e. a set of non-empty, disjoint subsets of the CS which together cover it.
- To get that partition, we just group together the worlds of the CS that agree on all of the question's alternatives.⁸

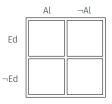


Step 1: Check how each world deals with the alternatives: defines *Al did* the readings and defines *Ed did the readings*.

- The resulting groups are called **cells**: they tell us which distinctions "matter".
- I will consider exhaustive and mutually exclusive alternatives,
 s.t. question semantics and question pragmatics in fact coincide

⁸Groenendijk and Stokhof, 1984.

- Questions induce a **partition of the CS**, i.e. a set of non-empty, disjoint subsets of the CS which together cover it.
- To get that partition, we just group together the worlds of the CS that agree on all of the question's alternatives.⁸

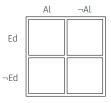

Step 2: Partition the CS by grouping worlds that pattern the same.

- The resulting groups are called cells: they tell us which distinctions "matter".
- I will consider exhaustive and mutually exclusive alternatives, s.t. question semantics and question pragmatics in fact coincide

⁸Groenendijk and Stokhof, 1984.

Standard question pragmatics

- Questions induce a **partition of the CS**, i.e. a set of non-empty, disjoint subsets of the CS which together cover it.
- To get that partition, we just group together the worlds of the CS that agree on all of the question's alternatives.⁸

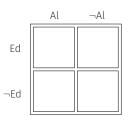

Step 2: Partition the CS by grouping worlds that pattern the same.

- The resulting groups are called **cells**: they tell us which distinctions "matter".
- I will consider exhaustive and mutually exclusive alternatives, s.t. question semantics and question pragmatics in fact coincide

⁸Groenendijk and Stokhof, 1984.

Standard question pragmatics

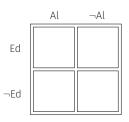
- Questions induce a **partition of the CS**, i.e. a set of non-empty, disjoint subsets of the CS which together cover it.
- To get that partition, we just group together the worlds of the CS that agree on all of the question's alternatives.⁸


Step 2: Partition the CS by grouping worlds that pattern the same.

- The resulting groups are called **cells**: they tell us which distinctions "matter".
- I will consider exhaustive and mutually exclusive alternatives, s.t. question semantics and question pragmatics in fact coincide.

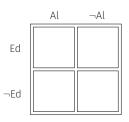
⁸Groenendijk and Stokhof, 1984.

Answering questions


- Here the cells are only Ed did the readings, only Al, Ed an Al, and neither. Those are maximal answers.
- Union of cells, e.g. *Ed did the readings* (including *only Ed*, and *Ed and Al*), are **non-maximal answers**.

 Questions encode maximal answers only. The non-maximal ones are derived by union.

Answering questions


- Here the cells are only Ed did the readings, only Al, Ed an Al, and neither. Those are maximal answers.
- Union of cells, e.g. Ed did the readings (including only Ed, and Ed and Al), are non-maximal answers.

 Questions encode maximal answers only. The non-maximal ones are derived by union.

Answering questions

- Here the cells are only Ed did the readings, only Al, Ed an Al, and neither. Those are maximal answers.
- Union of cells, e.g. Ed did the readings (including only Ed, and Ed and Al), are non-maximal answers.

 Questions encode maximal answers only. The non-maximal ones are derived by union.

Constraints on question-answer pairs: Congruence

- · Question-answer pairs are subject to constraints.
- For instance, an answer better be "congruent" with the corresponding question. This explains the pattern in (10).
- (10) Who did the readings?
 - a. **ED** did the readings.
 - b. # Ed did the READINGS.
- (11) QUESTION-ANSWER CONGRUENCE (Rooth, 1992's version). For a pair $\langle Q, A \rangle$ to be well-formed, any alternative in $[\![Q]\!]$, must be obtainable from a substitution of A's focused material.

Constraints on question-answer pairs: Congruence

- · Question-answer pairs are subject to constraints.
- For instance, an answer better be "congruent" with the corresponding question. This explains the pattern in (10).
- (10) Who did the readings?
 - a. **ED** did the readings.
 - b. # Ed did the **READINGS**.
- (11) QUESTION-ANSWER CONGRUENCE (Rooth, 1992's version). For a pair $\langle Q, A \rangle$ to be well-formed, any alternative in $[\![Q]\!]$, must be obtainable from a substitution of A's focused material.

Constraints on question-answer pairs: Congruence

- · Question-answer pairs are subject to constraints.
- For instance, an answer better be "congruent" with the corresponding question. This explains the pattern in (10).
- (10) Who did the readings?
 - a. **ED** did the readings.
 - b. # Ed did the **READINGS**.
- (11) **QUESTION-ANSWER CONGRUENCE** (Rooth, 1992's version). For a pair $\langle Q, A \rangle$ to be well-formed, any alternative in $[\![Q]\!]$, must be obtainable from a substitution of A's focused material.

Constraints on question-answer pairs: Relevance

- Relevance spells out the intuition that the cells of a question drive what needs to be addressed.
 - (12) **RELEVANCE** (Križ & Spector, 2020's version). An answer is relevant to a question if it corresponds to a non-maximal union of cells
- But what if there's no clear question?
- Although the idea that similar constraints are at play beyond overt question-answer pairs has been around for a while,⁹ the systematic link between assertions and implicit questions is still poorly understood.

⁹Lewis, 1988; Roberts, 1996; Riester, 2019, i.a.

Constraints on question-answer pairs: Relevance

- RELEVANCE spells out the intuition that the cells of a question drive what needs to be addressed.
 - (12) **RELEVANCE** (Križ & Spector, 2020's version). An answer is relevant to a question if it corresponds to a non-maximal union of cells
- · But what if there's no clear question?
- Although the idea that similar constraints are at play beyond overt question-answer pairs has been around for a while,⁹ the systematic link between assertions and implicit questions is still poorly understood.

⁹Lewis, 1988; Roberts, 1996; Riester, 2019, i.a.

Constraints on question-answer pairs: Relevance

- Relevance spells out the intuition that the cells of a question drive what needs to be addressed.
 - (12) **RELEVANCE** (Križ & Spector, 2020's version). An answer is relevant to a question if it corresponds to a non-maximal union of cells
- · But what if there's no clear question?
- Although the idea that similar constraints are at play beyond overt question-answer pairs has been around for a while,⁹ the systematic link between assertions and implicit questions is still poorly understood.

⁹Lewis, 1988; Roberts, 1996; Riester, 2019, i.a.

Implicit Questions

- Core intuition: a good sentence has to be a good answer to a good question.¹⁰
- I formalize this longstanding intuition by proposing a compositional model of implicit questions, which is:
 - directly sensitive to the degree of specificity conveyed by sentences:
 - and constrained by generalizations of familiar pragmatic principles, including RELEVANCE and REDUNDANCY.

¹⁰ Rooth, 1985; Lewis, 1988; Rooth, 1992; Roberts, 1996; Büring, 2003; Katzir and Singh, 2015; Zhang, 2022, i.a.

- Core intuition: a good sentence has to be a good answer to a good question.¹⁰
- I formalize this longstanding intuition by proposing a compositional model of implicit questions, which is:
 - directly sensitive to the degree of specificity conveyed by sentences:
 - and constrained by generalizations of familiar pragmatic principles, including RELEVANCE and REDUNDANCY.

¹⁰ Rooth, 1985; Lewis, 1988; Rooth, 1992; Roberts, 1996; Büring, 2003; Katzir and Singh, 2015; Zhang, 2022, i.a.

- Core intuition: a good sentence has to be a good answer to a good question.¹⁰
- I formalize this longstanding intuition by proposing a compositional model of implicit questions, which is:
 - directly sensitive to the degree of specificity conveyed by sentences;
 - and constrained by generalizations of familiar pragmatic principles, including RELEVANCE and REDUNDANCY.

¹⁰ Rooth, 1985; Lewis, 1988; Rooth, 1992; Roberts, 1996; Büring, 2003; Katzir and Singh, 2015; Zhang, 2022, i.a.

- Core intuition: a good sentence has to be a good answer to a good question.¹⁰
- I formalize this longstanding intuition by proposing a compositional model of implicit questions, which is:
 - directly sensitive to the degree of specificity conveyed by sentences;
 - and constrained by generalizations of **familiar pragmatic principles**, including RELEVANCE and REDUNDANCY.

¹⁰ Rooth, 1985; Lewis, 1988; Rooth, 1992; Roberts, 1996; Büring, 2003; Katzir and Singh, 2015; Zhang, 2022, i.a.

A desideratum to guide our framework

- Overt question answer-pairs match in terms of **specificity**. This should be a desideratum for implicit questions, too.
- (13) a. Where did Jo study? -{Paris, France}.
 - b. In which country did Jo study? -{#Paris, France}
 - c. In which city did Jo study? –{Paris, #France}
 - Basic alternative semantics does not fully capture this: generating a question from a proposition by replacing its focused material with same-type alternatives does not guarantee that the outputs will have same specificity.¹¹
 - For instance, alternatives like Paris and France, may be mixed together, giving rise to a weird partition.

¹¹Assuming alternatives must be "relevant" does not really help either: one must then explain how relevance incorporates specificity.

A desideratum to guide our framework

- Overt question answer-pairs match in terms of **specificity**. This should be a desideratum for implicit questions, too.
- (13) a. Where did Jo study? -{Paris, France}.
 - b. In which country did Jo study? -{#Paris, France}
 - c. In which city did Jo study? –{Paris, #France}
 - Basic alternative semantics does not fully capture this: generating a question from a proposition by replacing its focused material with same-type alternatives does not guarantee that the outputs will have same specificity.¹¹
 - For instance, alternatives like **Paris** and **France**, may be mixed together, giving rise to a weird partition.

 $^{^{11}}$ Assuming alternatives must be "relevant" does not really help either: one must then explain how relevance incorporates specificity.

A desideratum to guide our framework

- Overt question answer-pairs match in terms of **specificity**. This should be a desideratum for implicit questions, too.
- (13) a. Where did Jo study? -{Paris, France}.
 - b. In which country did Jo study? -{#Paris, France}
 - c. In which city did Jo study? -{Paris, #France}
 - Basic alternative semantics does not fully capture this: generating a question from a proposition by replacing its focused material with same-type alternatives does not guarantee that the outputs will have same specificity.¹¹
 - For instance, alternatives like Paris and France, may be mixed together, giving rise to a weird partition.

 $^{^{11}} Assuming alternatives must be "relevant" does not really help either: one must then explain how relevance incorporates specificity.$

Additional motivations for a specificity constraint

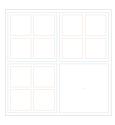
- Does question-answer Relevance help achieve the specificity desideratum? Not quite: both answer in (14) are unions of cells and as such Relevant, yet only (14b) seems to match the question's degree of specificity.
- (14) In which country did Jo study?
 - a. # Western Europe
 - b. France, the UK, or Germany
 - Intuitively, (14a) evokes a which area question while (14b) evokes a which country question, and the former question is coarser-grained than the latter.
 - We need a model of questions that encodes specificity relations between propositions – and questions themselves

Additional motivations for a specificity constraint

- Does question-answer Relevance help achieve the specificity desideratum? Not quite: both answer in (14) are unions of cells and as such Relevant, yet only (14b) seems to match the question's degree of specificity.
- (14) In which country did Jo study?
 - a. # Western Europe
 - b. France, the UK, or Germany
 - Intuitively, (14a) evokes a *which area* question while (14b) evokes a *which country* question, and **the former question is** coarser-grained than the latter.
 - We need a model of questions that encodes specificity relations between propositions – and questions themselves

Additional motivations for a specificity constraint

- Does question-answer Relevance help achieve the specificity desideratum? Not quite: both answer in (14) are unions of cells and as such Relevant, yet only (14b) seems to match the question's degree of specificity.
- (14) In which country did Jo study?
 - a. # Western Europe
 - b. France, the UK, or Germany
 - Intuitively, (14a) evokes a which area question while (14b) evokes a which country question, and the former question is coarser-grained than the latter.
 - We need a model of questions that encodes specificity relations between propositions – and questions themselves.

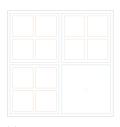

 Question are modeled as nested partitions. Nesting is based on specificity:¹² nested partitions are finer-grained than nesting partitions, meaning, Paris and France cannot be mixed up.

(a) By-city partition

b) By-country partition

(c) Recursive partition.

¹²Specificity can be defined using Hasse diagrams induced by ⊨ on complete sets of alternatives.

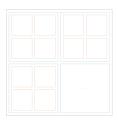

 Question are modeled as nested partitions. Nesting is based on specificity:¹² nested partitions are finer-grained than nesting partitions, meaning, Paris and France cannot be mixed up.

(a) By-city partition.

(**b)** By-country partitior

c) Recursive partition.

¹²Specificity can be defined using Hasse diagrams induced by ⊨ on complete sets of alternatives.


 Question are modeled as nested partitions. Nesting is based on specificity:¹² nested partitions are finer-grained than nesting partitions, meaning, Paris and France cannot be mixed up.

(a) By-city partition

(b) By-country partition

(c) Recursive partition.

¹²Specificity can be defined using Hasse diagrams induced by ⊨ on complete sets of alternatives.

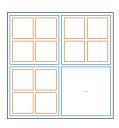
 Question are modeled as nested partitions. Nesting is based on specificity:¹² nested partitions are finer-grained than nesting partitions, meaning, Paris and France cannot be mixed up.

(a) By-city partition

(b) By-country partitior

(c) Recursive partition.

¹²Specificity can be defined using Hasse diagrams induced by ⊨ on complete sets of alternatives.


 Question are modeled as nested partitions. Nesting is based on specificity:¹² nested partitions are finer-grained than nesting partitions, meaning, Paris and France cannot be mixed up.

(b) By-country partition

(c) Recursive partition.

¹²Specificity can be defined using Hasse diagrams induced by ⊨ on complete sets of alternatives.

Useful notational variant: questions as Trees

- Nested partitions will be represented as trees whose nodes are sets of worlds partitioned by their children. The layers of a question-tree have same specificity.
- Simple sentences like Jo studied in Paris may then evoke nested "wh" trees like Fig. 2a, or "polar" trees like Fig. 2b.

Fig. 2: Trees evoked by Jo studied in Paris.

· Their deepest layers matches the prejacent's specificity.

Useful notational variant: questions as Trees

- Nested partitions will be represented as trees whose nodes are sets of worlds partitioned by their children. The layers of a question-tree have same specificity.
- Simple sentences like *Jo studied in Paris* may then evoke nested "wh" trees like Fig. 2a, or "polar" trees like Fig. 2b.

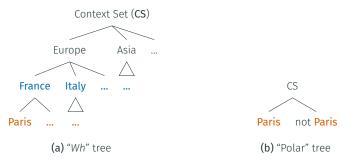


Fig. 2: Trees evoked by Jo studied in Paris.

· Their deepest layers matches the prejacent's specificity.

Useful notational variant: questions as Trees

- Nested partitions will be represented as trees whose nodes are sets of worlds partitioned by their children. The layers of a question-tree have same specificity.
- Simple sentences like *Jo studied in Paris* may then evoke nested "wh" trees like Fig. 2a, or "polar" trees like Fig. 2b.

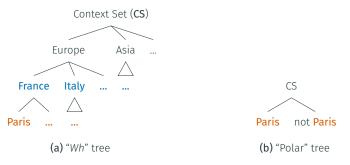


Fig. 2: Trees evoked by Jo studied in Paris.

· Their deepest layers matches the prejacent's specificity.

Benefits of question trees beyond specificity encoding

- Implicit questions¹³, and question trees¹⁴ have been around for a while. Ippolito (2019) even discussed how specificity differences in trees could capture oddness.
- But none of the previous approaches leveraged the expressivity
 of a tree model, to render the idea that the questions evoked by
 a sentence, are compositionally derived from its LF.
- This is needed if one wants to make precise predictions about logically isomorphic, yet structurally distinct sentences (like HCs).
- We now introduce a set of rules for ¬, ∨, and conditionals, that apply to trees and recycle longstanding intuitions about these operators.

¹³Carlson, 1985; von Stutterheim and Klein, 1989; Kuppevelt, 1995; van Kuppevelt, 1995; Ginzburg, 1996, 2012.

¹⁴Roberts, 1996; Büring, 2003; Onea, 2016; Ippolito, 2019; Riester, 2019; Zhang, 2022, i.a.

Flagging, and "negating" Questions Trees

- When a simple assertion evokes an implicit question tree, leaves entailing the assertion get flagged; flags track "at-issue" meaning, and are compositionally derived.
- Negating an assertion flips the flags on this assertion's trees.
 Flag-flipping is a layerwise complement set operation, which does not affect the specificity of the underlying question-tree.

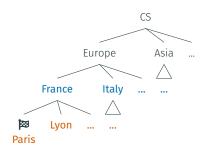


Fig. 3: A tree for Jo studied in Paris.

Flagging, and "negating" Questions Trees

- When a simple assertion evokes an implicit question tree, leaves entailing the assertion get flagged; flags track "at-issue" meaning, and are compositionally derived.
- Negating an assertion flips the flags on this assertion's trees.
 Flag-flipping is a layerwise complement set operation, which does not affect the specificity of the underlying question-tree.

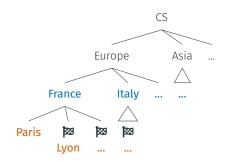


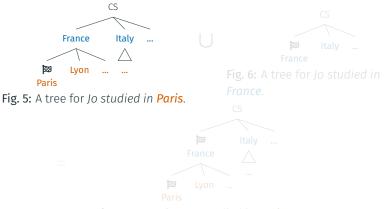
Fig. 4: A tree for Jo did not study in Paris.

Disjoining Questions Trees

- Disjunction fuses the trees evoked by the disjuncts, retaining only unions that are well-formed nested partitions.
- Set of flagged nodes are also fused.

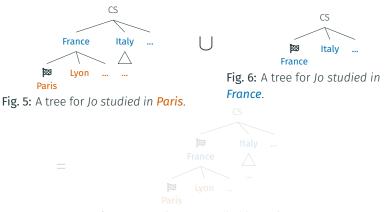
Fig. 7: A tree for #Jo studied in Paris or France.

Disjoining Questions Trees


- Disjunction fuses the trees evoked by the disjuncts, retaining only unions that are well-formed nested partitions.
- · Set of flagged nodes are also fused.

F**ig. 7:** A tree for #Jo studied in **Paris** or **France**.

Disjoining Questions Trees


- Disjunction fuses the trees evoked by the disjuncts, retaining only unions that are well-formed nested partitions.
- · Set of flagged nodes are also fused.

F**ig. 7:** A tree for #Jo studied in **Paris** or **France**.

Disjoining Questions Trees

- Disjunction fuses the trees evoked by the disjuncts, retaining only unions that are well-formed nested partitions.
- · Set of flagged nodes are also fused.

F**ig. 7:** A tree for #Jo studied in **Paris** or **France**.

Disjoining Questions Trees

- Disjunction fuses the trees evoked by the disjuncts, retaining only unions that are well-formed nested partitions.
- · Set of flagged nodes are also fused.

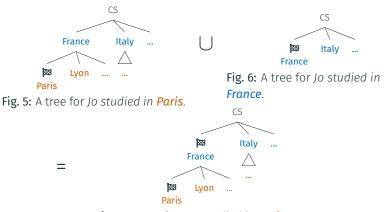


Fig. 7: A tree for #Jo studied in Paris or France.

Conditional Questions Trees

- Conditionals are often taken to restrict the evaluation of the consequent to the worlds in which the antecedent holds.¹
- Therefore, we assume that conditional question-trees raise a question evoked by the consequent, only where the antecedent holds.
- Technically, conditionals "plug" consequent trees, into the flagged leaves of the antecedent trees – keeping only the consequent's flags.

Fig. 8: A tree for If Jo studied in France, she did not study in Paris.

CS Italy ...

France

CS∩France

Lyon ...

¹Lewis, 1975; Heim, 1982; Kratzer, 1986, 1991, i.a.

Conditional Questions Trees

- Conditionals are often taken to restrict the evaluation of the consequent to the worlds in which the antecedent holds.¹
- Therefore, we assume that conditional question-trees raise a question evoked by the consequent, only where the antecedent holds.
- Technically, conditionals "plug" consequent trees, into the flagged leaves of the antecedent trees – keeping only the consequent's flags.

Fig. 8: A tree for If Jo studied in France, she did not study in Paris.

CS Italy ...
France

CS∩France

Paris Marketing Marketin

¹Lewis, 1975; Heim, 1982; Kratzer, 1986, 1991, i.a.

Conditional Questions Trees

- Conditionals are often taken to restrict the evaluation of the consequent to the worlds in which the antecedent holds.¹
- Therefore, we assume that conditional question-trees raise a question evoked by the consequent, only where the antecedent holds.
- Technically, conditionals "plug" consequent trees, into the flagged leaves of the antecedent trees – keeping only the consequent's flags.

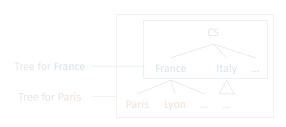
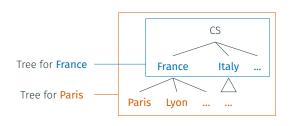


Fig. 8: A tree for If Jo studied in France, she did not study in Paris.

¹Lewis, 1975; Heim, 1982; Kratzer, 1986, 1991, i.a.


Interim summary: expressivity of question-trees

- Questions were modeled as nested partitions, represented as trees. Even if they look bulkier, they are just the inductive closure of an existing, incontroversial object: partitions of the CS.
- Trees are expressive enough to capture the intuition that some
 assertions (e.g. *Paris*, *London*) are more specific than others (e.g. *France*), in that they evoke more "ramified" trees. Specificity is
 made directly available to the pragmatic module.

Interim summary: expressivity of question-trees

- Questions were modeled as nested partitions, represented as trees. Even if they look bulkier, they are just the inductive closure of an existing, incontroversial object: partitions of the CS.
- Trees are expressive enough to capture the intuition that some assertions (e.g. *Paris, London*) are more specific than others (e.g. *France*), in that they evoke more "ramified" trees. Specificity is made directly available to the pragmatic module.

- Disjunctions and conditionals can evoke different tree structures, independently of their assigned semantics:
 - Disjunctive trees are formed with ∪, capturing the idea that disjuncts answer the same global question.¹⁵
 - Conditional trees are formed via an asymmetric ∩, capturing the idea that antecedents are restrictors.¹⁶
- This will allow us to capture the challenging contrast in HCs (and the absence of such a contrast in HDs) in an intuitive way.

¹⁵Simons, 2001; Westera, 2020; Zhang, 2022

¹⁶Lewis, 1975; Heim, 1982; Kratzer, 1986.

- Disjunctions and conditionals can evoke different tree structures, independently of their assigned semantics:
 - Disjunctive trees are formed with ∪, capturing the idea that disjuncts answer the same global question.¹⁵
 - Conditional trees are formed via an asymmetric ∩, capturing the idea that antecedents are restrictors.¹⁶
- This will allow us to capture the challenging contrast in HCs (and the absence of such a contrast in HDs) in an intuitive way.

¹⁵Simons, 2001; Westera, 2020; Zhang, 2022.

¹⁶Lewis, 1975; Heim, 1982; Kratzer, 1986

- Disjunctions and conditionals can evoke different tree structures, independently of their assigned semantics:
 - Disjunctive trees are formed with ∪, capturing the idea that disjuncts answer the same global question.¹⁵
 - Conditional trees are formed via an asymmetric ∩, capturing the idea that antecedents are restrictors.¹⁶
- This will allow us to capture the challenging contrast in HCs (and the absence of such a contrast in HDs) in an intuitive way.

¹⁵Simons, 2001; Westera, 2020; Zhang, 2022.

¹⁶Lewis, 1975; Heim, 1982; Kratzer, 1986.

- Disjunctions and conditionals can evoke different tree structures, independently of their assigned semantics:
 - Disjunctive trees are formed with ∪, capturing the idea that disjuncts answer the same global question.¹⁵
 - Conditional trees are formed via an asymmetric ∩, capturing the idea that antecedents are restrictors.¹⁶
- This will allow us to capture the challenging contrast in HCs (and the absence of such a contrast in HDs) in an intuitive way.

¹⁵Simons, 2001; Westera, 2020; Zhang, 2022.

¹⁶Lewis, 1975; Heim, 1982; Kratzer, 1986.

cHDs for free

Back to "Compatible" Hurford Disjunctions

- Recall cHDs seem to be odd due to the mere logical compatibility of their disjuncts.
- (7) "Compatible" Hurford Disjunction (cHD)?? Jo studied in France or the Basque country.Conveys: Jo studied in France or the Spanish Basque country.
- This will come almost for free in the current framework: France
 and the Basque country evoke question trees with
 irreconcilable degrees of specificity, making them impossible to
 disjoin properly.

Back to "Compatible" Hurford Disjunctions

- Recall cHDs seem to be odd due to the mere logical compatibility of their disjuncts.
- (7) "Compatible" Hurford Disjunction (cHD)?? Jo studied in France or the Basque country.Conveys: Jo studied in France or the Spanish Basque country.
- This will come almost for free in the current framework: France
 and the Basque country evoke question trees with
 irreconcilable degrees of specificity, making them impossible to
 disjoin properly.

Back to "Compatible" Hurford Disjunctions

- Recall cHDs seem to be odd due to the mere logical compatibility of their disjuncts.
- (7) "Compatible" Hurford Disjunction (cHD)?? Jo studied in France or the Basque country.Conveys: Jo studied in France or the Spanish Basque country.
- This will come almost for free in the current framework: France
 and the Basque country evoke question trees with
 irreconcilable degrees of specificity, making them impossible to
 disjoin properly.

Question trees for Jo studied in France

- The leaves of an evoked question tree always match the degree of specificity of the prejacent proposition.
- The leaves of question trees for France will necessarily include
 France ¹⁷

Fig. 9: Trees evoked by Jo studied in France.

¹⁷Even relaxing this—e.g. assuming a **France**-tree (and a **Basque**-tree) could contain **France** ∧ ¬**Basque** and **France** ∧ **Basque** leaves, we'd run into issues *later on* due to a violation of partition-by-*exh* Fox, 2018. But this argument is quite involved.

Question trees for Jo studied in France

- The leaves of an evoked question tree always match the degree of specificity of the prejacent proposition.
- The leaves of question trees for France will necessarily include France.¹⁷

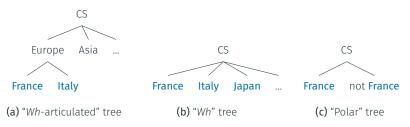


Fig. 9: Trees evoked by Jo studied in France.

¹⁷Even relaxing this–e.g. assuming a **France**-tree (and a **Basque**-tree) could contain **France** ∧ ¬**Basque** and **France** ∧ **Basque** leaves, we'd run into issues *later on* due to a violation of partition-by-*exh* Fox, 2018. But this argument is quite involved.

Question trees for Jo studied in the Basque country

 Likewise, the leaves of a question tree for the the Basque country will necessarily include the Basque country.

Fig. 10: Trees evoked by Jo studied in the Basque country.

Question trees for Jo studied in the Basque country

 Likewise, the leaves of a question tree for the the Basque country will necessarily include the Basque country.

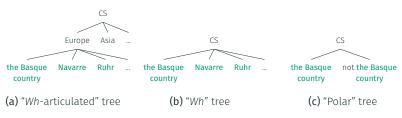


Fig. 10: Trees evoked by Jo studied in the Basque country.

Irreconcilable degrees of specificity

- Recall that disjuncts answer the same global question, so their question trees should be fused.
- Fusing a "France"-tree with a "Basque country"- tree always produces a tree with France and Basque country nodes: not a well-formed nested partition!

(a) Violates containment:

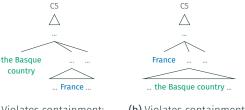
France cannot be

contained in anything

disjoint from the Basque

country.

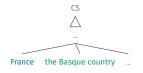
b) Violates containment: the Basque country cannot be contained in anything disjoint from



(c) Violates disjointness: the Basque country and France are not disjoint.

Fig. 11: Trees evoked by #Jo studied in **France** or **the Basque country**.

Irreconcilable degrees of specificity


- Recall that disjuncts answer the same global question, so their question trees should be fused.
- Fusing a "France"-tree with a "Basque country"- tree always produces a tree with France and Basque country nodes: not a well-formed nested partition!

(a) Violates containment:

France cannot be
contained in anything
disjoint from the Basque
country.

(b) Violates containment: the Basque country cannot be contained in anything disjoint from France.

(c) Violates disjointness: the Basque country and France are not disjoint.

Fig. 11: Trees evoked by #Jo studied in France or the Basque country.

Taking stock and moving on

- The fact France and the Basque country, when disjoined, cannot evoke a single well-formed question tree is interesting, because cHDs were a main challenge for most if not all past approaches to oddness; while for us their oddness is at the core of the model.
- We'll now turn to the case of HDs, in which disjuncts (Paris and France) yield a well-formed question tree, which however incurs a violation of an updated version of NON-REDUNDANCY.

Taking stock and moving on

- The fact France and the Basque country, when disjoined, cannot evoke a single well-formed question tree is interesting, because cHDs were a main challenge for most if not all past approaches to oddness; while for us their oddness is at the core of the model.
- We'll now turn to the case of HDs, in which disjuncts (Paris and France) yield a well-formed question tree, which however incurs a violation of an updated version of Non-REDUNDANCY.

Hurford Disjunctions and Redundancy

Back to Hurford Disjunctions

- (4) Hurford Disjunction (HD)# Jo studied in Paris or in France.
- In our framework, HDs evoke well-formed unions of trees evoked by the disjuncts. We can show that there is only one possibility, the one we computed before, repeated below.

Fig. 12: A tree for #Jo studied in Paris or France.

Descriptively, the issue seem to come from the fact the
 are on
 the same path to the CS root – i.e. inquiring about Paris, already
 settles France.

Back to Hurford Disjunctions

- (4) Hurford Disjunction (HD)# Jo studied in Paris or in France.
- In our framework, HDs evoke well-formed unions of trees evoked by the disjuncts. We can show that there is only one possibility, the one we computed before, repeated below.

Fig. 12: A tree for #Jo studied in Paris or France.

Descriptively, the issue seem to come from the fact the
 are on
 the same path to the CS root – i.e. inquiring about Paris, already
 settles France.

Back to Hurford Disjunctions

- (4) Hurford Disjunction (HD)# Jo studied in Paris or in France.
- In our framework, HDs evoke well-formed unions of trees evoked by the disjuncts. We can show that there is only one possibility, the one we computed before, repeated below.



Fig. 12: A tree for #Jo studied in Paris or France.

 Descriptively, the issue seem to come from the fact the are on the same path to the CS root – i.e. inquiring about Paris, already settles France.

Q-Non-Redundancy

- Recall REDUNDANCY arises when a sentence has the same logical content as one of its simplifications.
- We generalize this to sentence-tree pairs: Q-REDUNDANCY arises for a sentence-tree pair, if a simplification of the sentence, yields an "equivalent" tree.
- Tree equivalence is understood as **structural identity** plus **equality of minimal paths from the root to all** .

Q-Non-Redundancy

- Recall REDUNDANCY arises when a sentence has the same logical content as one of its simplifications.
- We generalize this to sentence-tree pairs: Q-REDUNDANCY arises for a sentence-tree pair, if a simplification of the sentence, yields an "equivalent" tree.
- Tree equivalence is understood as **structural identity** plus **equality of minimal paths from the root to all** .

Q-Non-Redundancy

- Recall REDUNDANCY arises when a sentence has the same logical content as one of its simplifications.
- We generalize this to sentence-tree pairs: Q-REDUNDANCY arises for a sentence-tree pair, if a simplification of the sentence, yields an "equivalent" tree.
- Tree equivalence is understood as **structural identity** plus **equality of minimal paths from the root to all** .

Capturing HDs

- The HD *Paris* or *France*, is then odd because its only implicit tree, is equivalent to a tree evoked by the *Paris*-disjunct.
- The trees below have same structure, and both only need one path, from the CS root to Paris, to cover all .
- This captures the intuition that inquiring about Paris, settles
 France "for free".

Fig. 13: Tree for #Jo studied in Paris or France.

Fig. 14: A tree for Jo studied in Paris.

Capturing HDs

- The HD *Paris* or *France*, is then odd because its only implicit tree, is equivalent to a tree evoked by the *Paris*-disjunct.
- The trees below have same structure, and both only need one path, from the CS root to Paris, to cover all ...
- This captures the intuition that inquiring about Paris, settles France "for free".

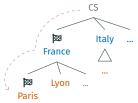


Fig. 13: Tree for #Jo studied in Paris or France.

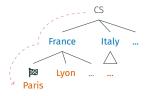


Fig. 14: A tree for Jo studied in Paris.

- Unlike standard Non-Redundancy approaches,
 Q-Non-Redundancy deems HDs odd due to their stronger disjunct.
- Because Q-Non-Redundancy is sensitive to the entire tree compositionally evoked by a sentence, it captures long-distance interactions e.g. between France and Paris in (15)
- (15) Long-Distance Hurford Disjunction (Marty & Romoli, 2022)# Jo studied in Paris or London, or studied in France.
 - Beyond Hurford Sentences, Q-Non-REDUNDANCY covers paradigms unaccounted for by earlier approaches.
 - Q-Non-Redundancy being a constraint on sentence-tree pairs, it
 effectively rules-out trees evoked by a given sentence. It may
 conspire with other constraints, to eventually rule-out all the
 tree evoked by a sentence and make it odd.

- Unlike standard Non-Redundancy approaches,
 Q-Non-Redundancy deems HDs odd due to their stronger disjunct.
- Because Q-Non-Redundancy is sensitive to the entire tree compositionally evoked by a sentence, it captures long-distance interactions e.g. between France and Paris in (15)
- (15) Long-Distance Hurford Disjunction (Marty & Romoli, 2022) # Jo studied in Paris or London, or studied in France.
 - Beyond Hurford Sentences, Q-Non-REDUNDANCY covers paradigms unaccounted for by earlier approaches.
 - Q-Non-Redundancy being a constraint on sentence-tree pairs, it
 effectively rules-out trees evoked by a given sentence. It may
 conspire with other constraints, to eventually rule-out all the
 tree evoked by a sentence and make it odd.

- Unlike standard Non-Redundancy approaches,
 Q-Non-Redundancy deems HDs odd due to their stronger disjunct.
- Because Q-Non-Redundancy is sensitive to the entire tree compositionally evoked by a sentence, it captures long-distance interactions e.g. between France and Paris in (15)
- (15) Long-Distance Hurford Disjunction (Marty & Romoli, 2022) # Jo studied in Paris or London, or studied in France.
 - Beyond Hurford Sentences, Q-Non-REDUNDANCY covers paradigms unaccounted for by earlier approaches.
 - Q-Non-Redundancy being a constraint on sentence-tree pairs, it
 effectively rules-out trees evoked by a given sentence. It may
 conspire with other constraints, to eventually rule-out all the
 tree evoked by a sentence and make it odd.

- Unlike standard Non-Redundancy approaches,
 Q-Non-Redundancy deems HDs odd due to their stronger disjunct.
- Because Q-Non-Redundancy is sensitive to the entire tree compositionally evoked by a sentence, it captures long-distance interactions e.g. between France and Paris in (15)
- (15) Long-Distance Hurford Disjunction (Marty & Romoli, 2022) # Jo studied in Paris or London, or studied in France.
 - Beyond Hurford Sentences, Q-Non-REDUNDANCY covers paradigms unaccounted for by earlier approaches.
 - Q-Non-Redundancy being a constraint on sentence-tree pairs, it
 effectively rules-out trees evoked by a given sentence. It may
 conspire with other constraints, to eventually rule-out all the
 tree evoked by a sentence and make it odd.

Hurford Conditionals and Relevance

The challenge of Hurford Conditionals

- HCs are logically isomorphic: both can be seen as $p \to \neg p^+$ with $p^+ \vDash p$, modulo double \neg -introduction (Mandelkern & Romoli, 2018).
- (8) Hurford Conditionals (HC)
 - a. If Jo studied in France, she did not study in Paris. $p \rightarrow \neg p^+$ where $p^+ \models p$
 - b. # If Jo did not study in Paris, she studied in France.

$$\neg p^+ \to p \equiv \underbrace{(\neg p^+)}_q \to \neg \underbrace{(\neg p)}_{q^+} \text{ where } q^+ \vDash q$$

Put differently, not Paris and France play symmetric roles

The challenge of Hurford Conditionals

- HCs are logically isomorphic: both can be seen as $p \to \neg p^+$ with $p^+ \models p$, modulo double \neg -introduction (Mandelkern & Romoli, 2018).
- (8) Hurford Conditionals (HC)
 - a. If Jo studied in France, she did not study in Paris. $p \rightarrow \neg p^+$ where $p^+ \models p$
 - b. # If Jo did **not** study in **Paris**, she studied in **France**.

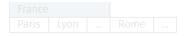
$$\neg p^+ \to p \equiv \underbrace{(\neg p^+)}_q \to \neg \underbrace{(\neg p)}_{q^+} \text{ where } q^+ \vDash q$$

Put differently, not Paris and France play symmetric roles.

the World				
not France	France			
not France	France and not Paris	Paris		
	Paris			

- (8) a. If Jo studied in **France**, she did **not** study in **Paris**.
 - b. # If Jo did **not** study in Paris, she studied in France.
- Descriptively, (8a) and #(8b) only differ in:
 - (i) the placement of overt negation: having it in the antecedent causes #.
 - (ii) how antecedents and consequents are ordered in terms of specificity: fine-to-coarse progressions are #.
- To capture HCs, Kalomoiros (2024)'s SUPER REDUNDANCY constraint exploited (i); I exploit (ii).
- This will make way for a more intuitive account, recycling a familiar concept (RELEVANCE) at the subsentential level.

- (8) a. If Jo studied in France, she did not study in Paris.
 - b. # If Jo did **not** study in Paris, she studied in France.
- Descriptively, (8a) and #(8b) only differ in:
 - (i) the placement of **overt negation**: having it in the antecedent causes #.
 - (ii) how antecedents and consequents are ordered in terms of specificity: fine-to-coarse progressions are #.
- To capture HCs, Kalomoiros (2024)'s SUPER REDUNDANCY constraint exploited (i); I exploit (ii).
- This will make way for a more intuitive account, recycling a familiar concept (RELEVANCE) at the subsentential level.


- (8) a. If Jo studied in France, she did not study in Paris.
 - b. # If Jo did **not** study in Paris, she studied in France.
- Descriptively, (8a) and #(8b) only differ in:
 - (i) the placement of overt negation: having it in the antecedent causes #.
 - (ii) how antecedents and consequents are ordered in terms of specificity: fine-to-coarse progressions are #.
- To capture HCs, Kalomoiros (2024)'s SUPER REDUNDANCY constraint exploited (i); I exploit (ii).
- This will make way for a more intuitive account, recycling a familiar concept (RELEVANCE) at the subsentential level.

- (8) a. If Jo studied in France, she did not study in Paris.
 - b. # If Jo did **not** study in Paris, she studied in France.
- Descriptively, (8a) and #(8b) only differ in:
 - (i) the placement of overt negation: having it in the antecedent causes #.
 - (ii) how antecedents and consequents are **ordered** in terms of **specificity**: **fine**-to-**coarse** progressions are #.
- To capture HCs, Kalomoiros (2024)'s SUPER REDUNDANCY constraint exploited (i); I exploit (ii).
- This will make way for a more intuitive account, recycling a familiar concept (RELEVANCE) at the subsentential level.

- (8) a. If Jo studied in France, she did not study in Paris.
 - b. # If Jo did **not** study in Paris, she studied in France.
- Descriptively, (8a) and #(8b) only differ in:
 - (i) the placement of overt negation: having it in the antecedent causes #.
 - (ii) how antecedents and consequents are ordered in terms of specificity: fine-to-coarse progressions are #.
- To capture HCs, Kalomoiros (2024)'s SUPER REDUNDANCY constraint exploited (i); I exploit (ii).
- This will make way for a more intuitive account, recycling a familiar concept (RELEVANCE) at the subsentential level.

An account based on specificity: core intuition

- (8) a. If Jo studied in **France**, she did **not** study in **Paris**.
 - b. # If Jo did **not** study in **Paris**, she studied in **France**.
- (8a) talks about cities, in the France-domain defined by the antecedent. This domain fully rules out some cities, and rules in others. Nice cut!

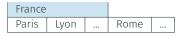
 (8b) talks about countries, in the not Paris-domain defined by the antecedent. This domain does not fully rule out any country

 it only partially affects France. Bad cut!

An account based on specificity: core intuition

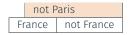
- (8) a. If Jo studied in **France**, she did **not** study in **Paris**.
 - b. # If Jo did **not** study in **Paris**, she studied in **France**.
- (8a) talks about cities, in the France-domain defined by the antecedent. This domain fully rules out some cities, and rules in others. Nice cut!

France			
Paris	Lyon	 Rome	


 (8b) talks about countries, in the not Paris-domain defined by the antecedent. This domain does not fully rule out any country

 it only partially affects France. Bad cut!

An account based on specificity: core intuition


- (8) a. If Jo studied in **France**, she did **not** study in **Paris**.
 - b. # If Jo did **not** study in **Paris**, she studied in **France**.
- (8a) talks about cities, in the France-domain defined by the antecedent. This domain fully rules out some cities, and rules in others. Nice cut!

 (8b) talks about countries, in the not Paris-domain defined by the antecedent. This domain does not fully rule out any country

 it only partially affects France. Bad cut!

- In the current framework, conditionals "plug" a tree evoked by the consequent into the flagged leaves of the antecedent's tree.
- This operation intersects all nodes of the consequent's tree, with the leaf it gets plugged into
- Intersection must be RELEVANT:
 - A leaf of the consequent's tree must be fully retained;¹⁸
 - A leaf of the consequent's tre must be fully excluded.¹⁹

Fig. 16: A tree for If Jo studied in France, she did not study in Paris.

¹⁹Draws from Lewis (1988)'s and Križ and Spector (2020)'s RELEVANCE

¹⁹Draws from Roberts (2012)'s RELEVANCE

- In the current framework, conditionals "plug" a tree evoked by the consequent into the flagged leaves of the antecedent's tree.
- This operation intersects all nodes of the consequent's tree, with the leaf it gets plugged into.
- Intersection must be RELEVANT
 - A leaf of the consequent's tree must be fully retained;¹⁸
 - A leaf of the consequent's tree must be fully excluded.¹⁹

Fig. 16: A tree for If Jo studied in France, she did not study in Paris.

¹⁹Draws from Lewis (1988)'s and Križ and Spector (2020)'s RELEVANCE

¹⁹Draws from Roberts (2012)'s RELEVANCE

- In the current framework, conditionals "plug" a tree evoked by the consequent into the flagged leaves of the antecedent's tree.
- This operation intersects all nodes of the consequent's tree, with the leaf it gets plugged into.
- · Intersection must be **RELEVANT**:
 - A leaf of the consequent's tree must be fully retained;¹⁸
 - A leaf of the consequent's tre must be fully excluded.¹⁹

Fig. 16: A tree for If Jo studied in France, she did not study in Paris.

¹⁹Draws from Lewis (1988)'s and Križ and Spector (2020)'s RELEVANCE

¹⁹ Draws from Roberts (2012)'s RELEVANCE

- In the current framework, conditionals "plug" a tree evoked by the consequent into the flagged leaves of the antecedent's tree.
- This operation intersects all nodes of the consequent's tree, with the leaf it gets plugged into.
- · Intersection must be **RELEVANT**:
 - A leaf of the consequent's tree must be fully retained;¹⁸
 - A leaf of the consequent's tree must be fully excluded.¹⁹

Fig. 16: A tree for If Jo studied in France, she did not study in Paris.

¹⁹Draws from Lewis (1988)'s and Križ and Spector (2020)'s RELEVANCE

¹⁹ Draws from Roberts (2012)'s RELEVANCE

- In the current framework, conditionals "plug" a tree evoked by the consequent into the flagged leaves of the antecedent's tree.
- This operation intersects all nodes of the consequent's tree, with the leaf it gets plugged into.
- · Intersection must be **RELEVANT**:
 - A leaf of the consequent's tree must be fully retained;¹⁸
 - A leaf of the consequent's tree must be fully excluded.¹⁹

Fig. 16: A tree for If Jo studied in France, she did not study in Paris.

¹⁹Draws from Lewis (1988)'s and Križ and Spector (2020)'s RELEVANCE

¹⁹Draws from Roberts (2012)'s RELEVANCE

Fig. 17: A tree for If Jo studied in France, she did not study in Paris.

- A city-level tree gets plugged into a France-leaf.
- The leaves that remains are all French cities; this satisfies INCREMENTAL O-RELEVANCE:
 - An original leaf, e.g. Paris, is fully retained;
 - An original leaf e.g. Rome, is fully excluded.
- (8a) is correctly predicted to be good.¹

¹It can be shown that Q-REDUNDANCY doesn't get in the way.

Fig. 17: A tree for If Jo studied in France, she did not study in Paris.

- A city-level tree gets plugged into a France-leaf.
- The leaves that remains are all French cities; this satisfies INCREMENTAL Q-RELEVANCE:
 - An original leaf, e.g. Paris, is fully retained;
 - An original leaf e.g. Rome, is fully excluded.
- (8a) is correctly predicted to be good.¹

¹It can be shown that Q-REDUNDANCY doesn't get in the way.

Fig. 17: A tree for If Jo studied in France, she did not study in Paris.

- A city-level tree gets plugged into a France-leaf.
- The leaves that remains are all French cities; this satisfies INCREMENTAL Q-RELEVANCE:
 - An original leaf, e.g. Paris, is fully retained;
 - An original leaf e.g. Rome, is fully excluded.
- · (8a) is correctly predicted to be good.¹

¹It can be shown that Q-REDUNDANCY doesn't get in the way.

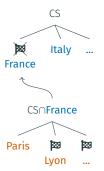


Fig. 17: A tree for If Jo studied in France, she did not study in Paris.

- A city-level tree gets plugged into a France-leaf.
- The leaves that remains are all French cities; this satisfies INCREMENTAL Q-RELEVANCE:
 - An original leaf, e.g. Paris, is fully retained;
 - An original leaf e.g. Rome, is fully excluded.
- (8a) is correctly predicted to be good.¹

¹It can be shown that Q-REDUNDANCY doesn't get in the way.

Fig. 17: A tree for If Jo studied in France, she did not study in Paris.

- A city-level tree gets plugged into a France-leaf.
- The leaves that remains are all French cities; this satisfies INCREMENTAL Q-RELEVANCE:
 - An original leaf, e.g. Paris, is fully retained;
 - An original leaf e.g. Rome, is fully excluded.
- (8a) is correctly predicted to be good.¹

 $^{^{\}rm 1}\mbox{lt}$ can be shown that Q-REDUNDANCY doesn't get in the way.

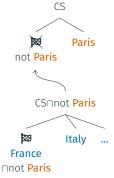


Fig. 18: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf
- The leaves that remains are all countries, but France is intersected with not Paris.
- This violates INCREMENTAL
 Q-RELEVANCE, because none of
 the original leaves is fully
 excluded.
- What if we consider a by-city, "wh" tree for the antecedent instead?

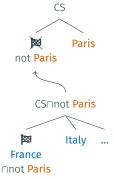


Fig. 18: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all countries, but France is intersected with not Paris.
- This violates INCREMENTAL
 Q-RELEVANCE, because none of
 the original leaves is fully
 excluded.
- What if we consider a by-city, "wh" tree for the antecedent instead?

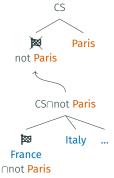


Fig. 18: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all countries, but France is intersected with not Paris.
- This violates INCREMENTAL
 Q-RELEVANCE, because none of
 the original leaves is fully
 excluded.
- What if we consider a by-city, "wh" tree for the antecedent instead?

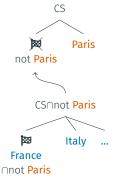


Fig. 18: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all countries, but France is intersected with not Paris.
- This violates INCREMENTAL
 Q-RELEVANCE, because none of
 the original leaves is fully
 excluded.
- What if we consider a by-city, "wh" tree for the antecedent instead?

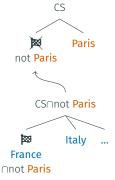


Fig. 18: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all countries, but France is intersected with not Paris.
- This violates INCREMENTAL
 Q-RELEVANCE, because none of
 the original leaves is fully
 excluded.
- What if we consider a by-city, "wh" tree for the antecedent instead?

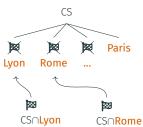


Fig. 19: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all smaller than countries – in fact they get shrunk into city-leaves.
- This violates INCREMENTAL
 Q-RELEVANCE, because no original leaf is fully retained.
- In sum (8b) is correctly predicted to be odd.¹

¹Considering "wh" trees for not **Paris** and/or polar trees for **France**, gets us back into Case 1 (previous slide) or Case 2 (this slide).

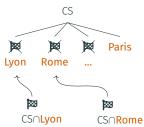


Fig. 19: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all smaller than countries – in fact they get shrunk into city-leaves.
- This violates INCREMENTAL
 Q-RELEVANCE, because no original leaf is fully retained.
- In sum (8b) is correctly predicted to be odd.¹

¹Considering "wh" trees for not *Paris* and/or polar trees for *France*, gets us back into Case 1 (previous slide) or Case 2 (this slide).

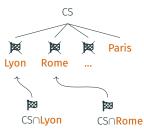


Fig. 19: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all smaller than countries – in fact they get shrunk into city-leaves.
- This violates INCREMENTAL
 Q-RELEVANCE, because no original leaf is fully retained.
- In sum (8b) is correctly predicted to be odd.¹

¹Considering "wh" trees for not **Paris** and/or polar trees for **France**, gets us back into Case 1 (previous slide) or Case 2 (this slide).

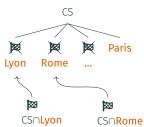


Fig. 19: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all smaller than countries – in fact they get shrunk into city-leaves.
- This violates INCREMENTAL
 Q-RELEVANCE, because no original
 leaf is fully retained.
- In sum (8b) is correctly predicted to be odd.¹

¹Considering "wh" trees for not **Paris** and/or polar trees for **France**, gets us back into Case 1 (previous slide) or Case 2 (this slide).

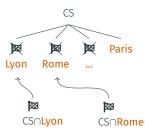


Fig. 19: A tree for If Jo did not study in Paris, she studied in France.

- A country-level tree gets plugged into a not Paris-leaf.
- The leaves that remains are all smaller than countries – in fact they get shrunk into city-leaves.
- This violates INCREMENTAL
 Q-RELEVANCE, because no original
 leaf is fully retained.
- In sum (8b) is correctly predicted to be odd.¹

¹Considering "wh" trees for not <u>Paris</u> and/or polar trees for <u>France</u>, gets us back into Case 1 (previous slide) or Case 2 (this slide).

Additional remarks about INCREMENTAL Q-RELEVANCE

- INCREMENTAL Q-RELEVANCE imposes that some, but not all
 distinctions introduced by the question being restricted, are
 retained; domain restrictions must be faithful to the specificity
 of the original question, but also relevantly informative.
- Antecedents (i.e. restrictors) that are too specific will not allow the leaves of the consequent to properly "fit" in the domain(s) they define.
- The "incremental" character of the constraint piggybacks on the asymmetric definition assigned to conditional question-trees: the roles of the antecedent and consequent are asymmetric, and so are violations of Incremental Q-Relevance.

Additional remarks about INCREMENTAL Q-RELEVANCE

- INCREMENTAL Q-RELEVANCE imposes that some, but not all
 distinctions introduced by the question being restricted, are
 retained; domain restrictions must be faithful to the specificity
 of the original question, but also relevantly informative.
- Antecedents (i.e. restrictors) that are too specific will not allow the leaves of the consequent to properly "fit" in the domain(s) they define.
- The "incremental" character of the constraint piggybacks on the asymmetric definition assigned to conditional question-trees: the roles of the antecedent and consequent are asymmetric, and so are violations of Incremental Q-Relevance.

Additional remarks about INCREMENTAL Q-RELEVANCE

- INCREMENTAL Q-RELEVANCE imposes that some, but not all
 distinctions introduced by the question being restricted, are
 retained; domain restrictions must be faithful to the specificity
 of the original question, but also relevantly informative.
- Antecedents (i.e. restrictors) that are too specific will not allow the leaves of the consequent to properly "fit" in the domain(s) they define.
- The "incremental" character of the constraint piggybacks on the asymmetric definition assigned to conditional question-trees: the roles of the antecedent and consequent are asymmetric, and so are violations of INCREMENTAL Q-RELEVANCE.

Further teasing apart specificity vs. overt negation

- INCREMENTAL Q-RELEVANCE ends up capturing subtle asymmetries in "compatible" variants of HCs, whose oddness seems more specificity-sensitive (in a weaker sense) than negation-sensitive.
- (16) a. # If Jo did **not** study in **the Basque country**, she studied in **France**.
 - b. ? If Jo did **not** study in **France**, she studied in **the Basque country**.
 - c. # If Jo studied in the Basque country, he did not study in France.
 - d. If Jo studied in France, she did not study in the Basque country.
 - This further supports the current view, against Kalomoiros (2024)'s earlier view of HCs.

Further teasing apart specificity vs. overt negation

- INCREMENTAL Q-RELEVANCE ends up capturing subtle asymmetries in "compatible" variants of HCs, whose oddness seems more specificity-sensitive (in a weaker sense) than negation-sensitive.
- (16) a. # If Jo did **not** study in **the Basque country**, she studied in **France**.
 - b. ? If Jo did **not** study in **France**, she studied in **the Basque country**.
 - c. # If Jo studied in the Basque country, he did not study in France.
 - d. If Jo studied in France, she did not study in the Basque country.
 - This further supports the current view, against Kalomoiros (2024)'s earlier view of HCs.

Conclusion and outlook

- I sketched a compositional model of implicit questions, and of their degree of specificity.
- This in and of itself appears to be needed to reflect deep intuitions about the dynamics of conversation.
- Existing concepts (questions-as-partitions, REDUNDANCY, RELEVANCE) were minimally "lifted":
 - · Partitions were made recursive in the form of question-trees;
 - Pragmatic constraints were rephrased to apply to sentences and their implicit trees.
- From this framework, I derived oddness contrasts between sentences that approaches solely based on LFs and propositional meanings were not powerful enough to capture.²⁰

²⁰At the very least without under-the-hood assumptions

- I sketched a compositional model of implicit questions, and of their degree of specificity.
- This in and of itself appears to be needed to reflect deep intuitions about the dynamics of conversation.
- Existing concepts (questions-as-partitions, REDUNDANCY, RELEVANCE) were minimally "lifted":
 - · Partitions were made recursive in the form of question-trees
 - Pragmatic constraints were rephrased to apply to sentences and their implicit trees.
- From this framework, I derived oddness contrasts between sentences that approaches solely based on LFs and propositional meanings were not powerful enough to capture.²⁰

²⁰At the very least without under-the-hood assumptions

- I sketched a compositional model of implicit questions, and of their degree of specificity.
- This in and of itself appears to be needed to reflect deep intuitions about the dynamics of conversation.
- Existing concepts (questions-as-partitions, REDUNDANCY, RELEVANCE) were minimally "lifted":
 - · Partitions were made recursive in the form of question-trees
 - Pragmatic constraints were rephrased to apply to sentences and their implicit trees.
- From this framework, I derived oddness contrasts between sentences that approaches solely based on LFs and propositional meanings were not powerful enough to capture.²⁰

²⁰At the very least without under-the-hood assumptions

- I sketched a compositional model of implicit questions, and of their degree of specificity.
- This in and of itself appears to be needed to reflect deep intuitions about the dynamics of conversation.
- Existing concepts (questions-as-partitions, REDUNDANCY, RELEVANCE) were minimally "lifted":
 - · Partitions were made recursive in the form of question-trees;
 - Pragmatic constraints were rephrased to apply to sentences and their implicit trees.
- From this framework, I derived oddness contrasts between sentences that approaches solely based on LFs and propositional meanings were not powerful enough to capture.²⁰

²⁰At the very least without under-the-hood assumptions

- I sketched a compositional model of implicit questions, and of their degree of specificity.
- This in and of itself appears to be needed to reflect deep intuitions about the dynamics of conversation.
- Existing concepts (questions-as-partitions, REDUNDANCY, RELEVANCE) were minimally "lifted":
 - · Partitions were made recursive in the form of question-trees;
 - Pragmatic constraints were rephrased to apply to sentences and their implicit trees.
- From this framework, I derived oddness contrasts between sentences that approaches solely based on LFs and propositional meanings were not powerful enough to capture.²⁰

²⁰At the very least without under-the-hood assumptions.

- I sketched a compositional model of implicit questions, and of their degree of specificity.
- This in and of itself appears to be needed to reflect deep intuitions about the dynamics of conversation.
- Existing concepts (questions-as-partitions, REDUNDANCY, RELEVANCE) were minimally "lifted":
 - · Partitions were made recursive in the form of question-trees;
 - Pragmatic constraints were rephrased to apply to sentences and their implicit trees.
- From this framework, I derived oddness contrasts between sentences that approaches solely based on LFs and propositional meanings were not powerful enough to capture.²⁰

²⁰At the very least without under-the-hood assumptions.

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- Ongoing work on:
 - Repair operators which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- · To be further explored/fleshed out
 - Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions;²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 202

²⁰Haslinger, 2023

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - Repair operators which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions;²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 202

²⁰Haslinger, 2023

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - **Repair operators** which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions,²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 202

²⁰Haslinger, 202

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - Repair operators which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions,²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 202

²⁰Haslinger, 2023

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - Repair operators which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - Oddness in conjunctions;²
 - Presupposition projection, in relation to implicit questions;²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 202

²⁰Haslinger, 202

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - **Repair operators** which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - · Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions;²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 202

²⁰Haslinger, 202

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - Repair operators which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - · Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions,²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 202

²⁰Haslinger, 202

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - Repair operators which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - · Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions,²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - Quantifications (especially modals re:Free Choice²⁶)

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 1

²⁰Haslinger, 202

²¹Kaufmann, 2016, i.a

- Beyond the cases discussed here, the framework interacts with embedded implicatures, and the overt exhaustifier *only* in interesting ways.
- · Ongoing work on:
 - **Repair operators** which seem to target implicit question-trees: only, but, at least.²¹
 - How implicit question may drive overtness asymmetries between competing operators.²²
- To be further explored/fleshed out:
 - · Oddness in conjunctions;²³
 - Presupposition projection, in relation to implicit questions,²⁴
 - Explicit questions (their own implicit import; how they shape oddness²⁵);
 - **Quantifications** (especially modals re:Free Choice²⁶).

¹⁶Hénot-Mortier, 2025a, 2025c

¹⁷Hénot-Mortier, 2025b

¹⁸Haslinger, 2024

¹⁹Doron and Wehbe, 2024

²⁰ Haslinger, 2023

²¹Kaufmann, 2016, i.a.

Thank you!

Selected references i

Strawson, P. F. (1950).On referring. *Mind*, *59*(235), 320–344. Retrieved November 19, 2025, from http://www.jstor.org/stable/2251176

Hamblin, C. L. (1973). Questions in montague english. Foundations of Language, 10(1), 41–53.

Hurford, J. R. (1974). Exclusive or Inclusive Disjunction. Foundations of Language, 11(3), 409–411.

Stalnaker, R. (1974). **Pragmatic Presuppositions.** In M. K. Munitz & P. K. Unger (Eds.), Semantics and Philosophy (pp. 197–213). New York University Press.

Grice, H. P. (1975). Logic and conversation. In D. Davidson (Ed.), *The logic of grammar* (pp. 64–75). Dickenson Pub. Co.

Lewis, D. (1975). Adverbs of quantification. In E. L. Keenan (Ed.), Formal semantics of natural language: Papers from a colloquium sponsored by the king's college research centre, cambridge (pp. 3–15). Cambridge University Press.

Karttunen, L. (1977). Syntax and Semantics of Questions. Linguistics and Philosophy, 1(1), 3–44. https://doi.org/10.1007/bf00351935

Stalnaker, R. (1978). Assertion. Syntax and Semantics (New York Academic Press), 9, 315–332.

Selected references ii

Heim, I. (1982). The semantics of definite and indefinite noun phrases [Doctoral dissertation, UMass Amherst].

Heim, I. (1983a, December). File change semantics and the familiarity theory of definiteness. In Meaning, use, and interpretation of language (pp. 164–189). DE GRUYTER. https://doi.org/10.1515/9783110852820.164

Heim, I. (1983b). On the projection problem for presuppositions. In M. Barlow,
 D. P. Flickinger, & M. T. Wescoat (Eds.), Proceedings of the second west coast conference on formal linguistics (pp. 114–126). Stanford University Department of Linguistics.

Groenendijk, J., & Stokhof, M. (1984). Studies in the semantics of questions and the pragmatics of answers [Doctoral dissertation, University of Amsterdam] [(Unpublished doctoral dissertation)].

Horn, L. (1984). Toward a new taxonomy for pragmatic inference: Q-based and r-based implicature. In D. Schiffrin (Ed.), Meaning, form, and use in context: Linguistic applications (pp. 11–42). Georgetown University Press.

Carlson, L. W. (1985). *Dialogue games: An approach to discourse analysis*. Kluwer Academic Publishers.

Rooth, M. (1985). Association with focus [Doctoral dissertation].

Selected references iii

Kratzer, A. (1986). Conditionals. Chicago Linguistic Society (CLS), 22(2), 1–15.

Lewis, D. (1988).Relevant Implication. Theoria, 54(3), 161–174. https://doi.org/10.1111/j.1755-2567.1988.tb00716.x

von Stutterheim, C., & Klein, W. (1989). Referential movement in descriptive and narrative discourse. In R. Dietrich & C. F. Graumann (Eds.), Language processing in social context (pp. 39–76, Vol. 54). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-87144-2.50005-7

Heim, I. (1991). Artikel und Definitheit. In A. Von Stechow & D. Wunderlich (Eds.), Semantics: An international handbook of contemporary research (pp. 487–535). Mouton de Gruyter.

Kratzer, A. (1991). Modality. In A. von Stechow & D. Wunderlich (Eds.), Handbuch semantik (pp. 639–50).

Rooth, M. (1992).A theory of focus interpretation. Natural Language Semantics, 1(1), 75–116. https://doi.org/10.1007/bf02342617

Kuppevelt, J. V. (1995). Discourse structure, topicality and questioning. *Journal of Linguistics*, 31(1), 109–147. https://doi.org/10.1017/S002222670000058X

Selected references iv

van Kuppevelt, J. (1995). Main structure and side structure in discourse. Linguistics, 33(4), 809–833. https://doi.org/10.1515/ling.1995.33.4.809

Ginzburg, J. (1996). Dynamics and semantics of dialogue. In J. Selignman & D. Westerstahl (Eds.), Language, logic and communication. CSLI.

Roberts, C. (1996).Information Structure in Discourse: Towards an Integrated Formal Theory of Pragmatics. Semantics and Pragmatics, 5, 1–69.

Simons, M. (2001). Disjunction and Alternativeness. Linguistics and Philosophy, 24(5), 597–619. https://doi.org/10.1023/a:1017597811833

Büring, D. (2003).On D-Trees, Beans, and B-Accents. Linguistics and Philosophy, 26(5), 511–545. https://doi.org/10.1023/a:1025887707652

Katzir, R. (2007).Structurally-defined alternatives. Linguistics and Philosophy, 30(6), 669–690. https://doi.org/10.1007/s10988-008-9029-y

Singh, R. (2008).On the interpretation of disjunction: Asymmetric, incremental, and eager for inconsistency. *Linguistics and Philosophy*, 31(2), 245–260. https://doi.org/10.1007/s10988-008-9038-x

Ginzburg, J. (2012). The interactive stance. Oxford University Press.

Selected references v

Roberts, C. (2012).Information structure in discourse: Towards an integrated formal theory of pragmatics. Semantics and Pragmatics, 5. https://doi.org/10.3765/sp.5.6

Meyer, M.-C. (2013). *Ignorance and grammar* [Doctoral dissertation, Massachusetts Institute of Technology].

Katzir, R., & Singh, R. (2014). Hurford disjunctions: Embedded exhaustification and structural economy. Proceedings of Sinn und Bedeutung, 18, 201–216. https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/313

Katzir, R., & Singh, R. (2015). Economy of structure and information: Oddness, questions, and answers. Proceedings of Sinn und Bedeutung, 19, 322–339. https://doi.org/10.18148/sub/2015.v19i0.236

Kaufmann, M. (2016).Free Choice is a Form of Dependence. Natural Language Semantics, 24(3), 247–290. https://doi.org/10.1007/s11050-016-9125-4

Mayr, C., & Romoli, J. (2016). A puzzle for theories of redundancy: Exhaustification, incrementality, and the notion of local context. Semantics and Pragmatics, 9(7), 1–48. https://doi.org/10.3765/sp.9.7

Onea, E. (2016, February). *Potential Questions at the Semantics-Pragmatics Interface*. BRILL. https://doi.org/10.1163/9789004217935

Selected references vi

Fox, D. (2018). Partition by exhaustification: Comments on dayal 1996. ZAS Papers in Linguistics, 60, 403–434. https://doi.org/10.21248/zaspil.60.2018.474

Mandelkern, M., & Romoli, J. (2018). Hurford Conditionals. Journal of Semantics, 35(2), 357–367. https://doi.org/10.1093/jos/ffx022

Ippolito, M. (2019). Varieties of sobel sequences. Linguistics and Philosophy, 43(6), 633–671. https://doi.org/10.1007/s10988-019-09281-8

Riester, A. (2019, March). Constructing QUD Trees. In *Questions in Discourse* (pp. 164–193). BRILL. https://doi.org/10.1163/9789004378322_007

Križ, M., & Spector, B. (2020).Interpreting plural predication: Homogeneity and non-maximality. Linguistics and Philosophy, 44(5), 1131–1178. https://doi.org/10.1007/s10988-020-09311-w

Westera, M. (2020). Hurford disjunctions: An in-depth comparison of the grammatical and the pragmatic approach. *Under review*.

Marty, P., & Romoli, J. (2022). Varieties of Hurford disjunctions. Semantics and Pragmatics, 15(3), 1–25. https://doi.org/10.3765/sp.15.3

Zhang, Y. (2022). New perspectives on inquisitive semantics [Doctoral dissertation, University of Maryland].

Selected references vii

Haslinger, N. (2023). *Pragmatic constraints on imprecision and homogeneity* [Doctoral dissertation, Georg-August-Universität Göttingen].

Doron, O., & Wehbe, J. (2024). On the pragmatic status of locally accommodated presuppositions.

Haslinger, N. (2024). Context and linear order in redundant coordinations [Invited talk, BerlinBrnoVienna student workshop, Masaryk University in Brno].

Kalomoiros, A. (2024).An approach to Hurford Conditionals. Semantics and Linguistic Theory, 724–743. https://doi.org/10.3765/68bn3095

Hénot-Mortier, A. (2025a). Complementarity over competition in grammatical exhaustification. Semantics and Linguistic Theory.

Hénot-Mortier, A. (2025b). Covert operators are picked to minimize qud-ambiguity: The view from pex and only. Sinn un Bedeutung 30.

Hénot-Mortier, A. (2025c). Repairing bad questions makes for good sentences: The case of but and at least. Proceedings of the 61st Annual meeting of the Chicago Linguistic Society.