


“One tool to rule them all”? An integrated

model of the QuD for Hurford sentences1
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Introduction



Data at stake

Hurford Disjunctions (HD, cf. Hurford, 1974) like (1-2), which

feature entailing disjuncts, feel redundant.

(1) #Mary lives in Noto or she lives in Italy. p+ ∨ p

(2) #Mary lives in Italy or she lives in Noto. p ∨ p+

Hurford Conditionals (HC, cf. Mandelkern and Romoli, 2018), like

(3-4) are isomorphic variants of (1) assuming material implication

and (for (4)) a variable change of the form ¬p := q+/p+ := ¬q.

(3) # If Mary does not live in Noto, she lives in Italy. ¬p+ → p

(4) If Mary lives in Italy, she does not live in Noto. ¬¬p →
¬p+≡ ¬q+ → q

Yet, (3) is odd while (4) is felicitous. This is challenging for existing

accounts of Hurford sentences relying on a classical interpretation of

∨, →, and ¬.
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Previous work on Hurford sentences

Kalomoiros (2024) proposes an interesting solution to the puzzle

of HCs and HDs based on the concept of Super-Redundancy, which

gives a specific status to overt negation. However nothing is said

about how Hurford sentences can be repaired.

Haslinger (2023) accounts for HDs and other related cases, e.g.

coordination, via some intuitions about the Question under

Discussion (QuD, Van Kuppevelt, 1995; Roberts, 1996).

Zhang (2024), building on (Simons, 2001; Büring, 2003) proposes

another view on HDs and how to fix them, based on intuitions about

QuD trees; however, no compositional machinery is proposed to

derive those trees.

We will be trying to build on Haslinger’s and Zhang’s insights

to propose a way to retro-engineer and constrain questions

raised by sentences, allowing to derive the pattern of HCs and

HDs.
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At a glance

We account for HCs and HDs assuming that:

questions have different levels of granularity;

sentences raise implicit questions (Katzir and Singh, 2015 i.a.) in the

form of trees, in such a way that conditionals and disjunctions end

up having different contributions;

Relevance and Redundancy constraints restrict the computation

of implicit questions.

The problem with the infelicitous HC (3) will boil down to the fact

that the question raised by its consequent is “coarser-grained” than

that of its antecedent, and therefore appears Irrelevant, granted

the antecedent.

The problem with the infelicitous HDs (1-2) will come from the fact

their disjuncts raise 2 Redundant strategies of inquiry.
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Linking assertions to questions



Background on question semantics

Questions are usually seen as partitions of the Context Set (CS,

Stalnaker, 1974).

For any set of worlds S , a partition of S can be generated from a set

of propositions by simply grouping together the worlds of S that

“agree” on all those propositions (Hamblin, 1973). Let’s call that

operation Partition(S , p1, ...pk). Special cases:

You only consider one proposition p that is not settled by the CS;

the partition obtained intuitively corresponds to the polar question

of whether p ({p,¬p}).
You consider a set of propositions corresponding to focus
alternatives; the partition obtained intuitively corresponds to a
wh-question inquiring about the focused material.

• Special subcase: if the propositions are all possible and mutually

exclusive in S , the corresponding question partition is just the set of

those propositions: Partition(S , p1, ...pk ) = {p1, ...pk}.
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One step forward: questions as trees

The idea is not new (Büring, 2003; Riester, 2019; Zhang, 2024) but

I want to give it a slightly different flavor, defining questions trees

as possible parse trees of the CS.
A Q-tree is a trees whose nodes all denote sets of worlds (i.e.

propositions) and s.t.:

the root node denotes the CS;

other nodes are understood as possible answers (maximal or not) to

the question;

the children of any node N partition N and can be seen as a

“restricted” question defined in the domain of the CS where N holds.

CS : Mary had exactly one drink

Soft drink

Juice Coke Tea ...

Alcoholic drink

Beer Wine Liquor ...

Figure 1: An intuitive Q-tree for the question Which drink did Mary have? 7
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Interaction between assertive sentences and questions

A recent line of research (Katzir and Singh, 2015 a.o.) develops the

idea that felicitous sentences should be possible answers to a

“good” QuD. What’s the connection between assertive sentences

and Q-trees then?

Let’s call Q̂s(X ) the set of Q-trees a Logical Form X can be can be

seen as the answer to. We’d like some inductive algorithm allowing

to “retro-engineer” Q̂s(X ) starting from X ’s simplex parts and

following its structure from the bottom up.

This algorithm will interact with Q-tree well-formedness constraints

(Relevance, Redundancy, TBD) in such a way that certain

sentences will end up with an empty Q̂s(X ). Those will be

deemed odd.

8
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The machinery



Q̂s of simplex LFs (no operator, connective or quantifier)

Let’s first consider a simplex LF X denoting a proposition p. We’d

like T ∈ Q̂s(X ), to be s.t. its leaves denote the kind of traditional

question-partition derived from p...

either the polar partition: Partition(CS, {p}) = {p,¬p};
or, the same granularity wh-partition: Partition(CS, A g

p ) = A g
p ,

assuming A g
p is the set of exclusive same-granularity focus

alternatives to p (cf. Appendix).

We also want to allow for multiple layers of increasing granularity

(top-down), and s.t. each layer is defined by same-granularity

alternatives to an alternative of p entailed by p:

Partition(CS, A g
q ), with q ∈ Ap ∧p ⇒ q

Finally, we secure a way to keep track of what is being asserted by

X : we associate T ∈ Q̂s(X ) with a set of verifying nodes N+
T . In

the simplex case, N+
T = {p} (=the p-leaf).

9
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Q-trees for p and p+

CS

Noto ¬ Noto

(a) “Polar”

CS

Noto Rome Paris Berlin

(b) “Wh”

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(c) 2-level “wh”

Figure 2: Some schematic Q-trees compatible with the simplex proposition

p+=Mary lives in Noto. Boxed cells denote verifying nodes N+
T .

CS

IT ¬IT

(a) “Polar”

CS

IT FR DE

(b) “Wh”

Figure 3: Some schematic Q-trees compatible with p=Mary lives in Italy.
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Q̂s of negated LFs

Q-trees for a negated LF ¬X are structurally similar to those of X ,

modulo the sets of verifying nodes, that are flipped into their

non-verifying sisters.

CS

Noto ¬ Noto

(a)

CS

Noto Rome Paris Berlin

(b)

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(c)

Figure 4: Some schematic Q-trees compatible with ¬p+=Mary does not live in

Noto.
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The conditional case



Q̂s of conditional LFs (if X then Y)

Intuitively, a Q-tree for X → Y

focuses on the question raised by

Y in the sub-domain(s) of the CS

where X holds.

To get a Q-tree T for X → Y :

take a Q-tree TX ∈ Q̂s(X ) and a

Q-tree TY ∈ Q̂s(Y );

for each verifying node of TX ,

replace it by its intersection with

TY (=“plug in” TY ).

Intersecting a node N with a tree T

amounts to intersecting each node of

T with N, and pruning any resulting

empty node. Verifying nodes are

preserved: if M was verifying in T ,

then M ∩N will be verifying in T ∩N.

TX

l1 l2 l3

TY ∩ l1 TY ∩ l3

l4∩ l1 l5∩ l1 l4∩ l3 l5∩ l3

Figure 5: General form of a

Q-tree for X → Y . Nodes in

dashed boxes are assumed to

be verifying for X , and are thus

further partitioned according to

a Q-tree for Y . Boxed leaves

are assumed to support Y , and

thus also support X → Y .
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Intersecting a node N with a tree T
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Q-trees for #¬p+ → p and p →¬p+

CS

Noto ¬Noto

IT∩¬Noto FR DE

(a) TX=2a, TY=3b

CS

Noto Rome

IT∩Rome

Paris

FR

Berlin

DE

(b) TX=2b, TY=3b

Figure 6: Q-trees for #¬p+ → p = If Mary does not live in Noto, she lives in

Italy. More combinations possible but they all lead to the same result.

CS

IT

Noto ¬Noto∩IT

¬IT

(a) TX=3a, TY=2a

CS

IT

Noto Rome∩IT

¬IT

(b) TX=3a,TY=2b

Figure 7: Q-trees for p →¬p+= If Mary lives in Italy she does not live in

Noto. More combinations possible but they all lead to the same result.

13



Rephrasing Relevance

Under the partition-based view of questions, a proposition p is

relevant given a question, if it does not cut across cells. We want

some generalization of this to apply as a filter during Q-tree

derivation.

(5) Q-Relevance: If T ′′ is derived from T and T ′ via Q-tree

composition, then N+
T ′′ ⊆ N+

T ∪N+
T ′ .

This means that verifying nodes coming from the Q-trees passed as

input to a binary Q-tree composition rule should be either fully

ruled-out, or fully preserved in the output Q-tree, i.e., they should

not be cut-across.

A correlate in our {¬,∨,→}-fragment (trust me on the meaning of

∨ at that point):

(6) Q-Relevance (correlate): If tree T gets intersected with node

N, N+
T∩N ⊆ N+

T
14
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Filtering out Q-trees via Q-Relevance: #¬p+→p

Q-Relevance is violated in trees 6a & 6b, due to the impossibility

for a verifying Italy node to be fully contained within city-level nodes

(as introduced by the antecedent Q-tree).

This implies that Q̂s(¬p+ → p) = /0, and captures the infelicity of

the HC (3).

CS

Noto ¬Noto

IT∩¬Noto
̸=IT //

FR DE

(a) TX=2a, TY=3b

CS

Noto Rome

IT∩Rome

̸=IT //

Paris

FR

Berlin

DE

(b) TX=2b, TY=3b

Figure 6 (repeated): Potential Q-trees obtained for #¬p+→p
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Filtering out Q-trees via Q-Relevance: p→¬p+

Tree 7b (although not Tree 7a1) satisfies Q-Relevance, because it

allows to fully map each verifying not Noto-node (city-level) to a

particular country-level node.

This implies that Q̂s(p → ¬p+) ̸= /0 and captures the felicity of the

HC (4).

CS

IT

Noto ¬Noto∩IT
̸= ¬Noto //

¬IT

(a) TX=3a, TY=2a

CS

IT

Noto Rome∩IT
=Rome ,,

¬IT

(b) TX=3a,TY=2b

Figure 7 (repeated): Potential Q-trees obtained for p→¬p+

1Tree 7a runs into the same issue as trees 6a & 6b
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The disjunctive case



Q̂s of disjunctive LFs (X or Y)

Intuitively, a Q-tree for X ∨Y raises a question pertaining to X and

Y , simultaneously (Simons, 2001; Zhang, 2024). So, instead of

plugging one tree into another as we did with conditionals, we want

to properly fuse them.

To get a Q-tree for X ∨Y :

take a Q-tree TX ∈ Q̂s(X ) and a Q-tree TY ∈ Q̂s(Y );

Graph-union TX and TY by unioning the 2 sets of their nodes, the 2

sets of their verifying nodes, and the 2 sets of their edges (=all

parent-child pairs).

Check that the resulting tree is a Q-tree; if it is, return it; if it’s not,

then it means we had a clash between the partitionings introduced

by resp. TX and TY somewhere, so, return nothing (cf. Appendix).2

Note that the above Q-tree-union operation is symmetric, so

whatever we predict for LF X ∨Y , we predict for Y ∨X .

2I thank Amir Anvari for helping me come up with this definition.
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Q-tree for p+ ∨ p and p ∨ p+

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(a) Q-tree for p+

∪
CS

IT FR DE

(b) Q-tree for p

=

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(c) Q-tree for either

p ∨ p+ or p+ ∨ p

Figure 8: Deriving the only possible Q-tree for p ∨ p+/ p+ ∨ p

What’s wrong with the resulting disjunctive Q-tree? If you see a

path in a Q-tree as a strategy of inquiry to converge to a

maximal true answer, then there’s something suboptimal in Tree

8c: if you reach the Noto-node, then you’ve also reached the

Italy -node along the way!
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Rephrasing Redundancy

There are many different view on what Redundancy should be

like, but one of those views states that a sentence is redundant if it

has a formal simplification that ends up being contextually

equivalent (Katzir & Singh, 2014). We want some generalization of

this to apply to Q-trees.

(7) Q-Redundancy: LF X is Q-REDUNDANT iff there is a formal

simplification X’ of X obtained via constituent-to-subconstituent

substitution, s.t. Qtrees(X) ≦ Qtrees(X’).
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Unpacking Q-Redundancy

(8) Equivalent Sets of Qtrees: S ≦ S ′ iff

∀T ∈ S . ∃T ′ ∈ S ′. T ≡ T ′ (note: it is an asymmetric relation!)

(9) Equivalent Qtrees: T ≡ T ′ iff T and T ′ have same structure

and same set of maximal verifying paths.

(10) Verifying paths: set of paths (=ordered list of nodes) from the

root to each verifying node.

(11) Path containment: p ⊆ p′ iff p is a prefix of p′.

(12) Maximal Verifying Paths (P∗): if P is a set of verifying paths,

P∗ is the set of maximal elements of P w.r.t. path containment.

20



Filtering out Q-trees via Q-Redundancy

Q-Redundancy rules out the 2 HDs (1) and (2), more trivial cases

such as p ∨ p, and more complex cases such as Long-Distance HDs

(Marty & Romoli, 2022) (cf. Appendix).

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(a) Q-tree for either

p ∨ p+ or p+ ∨ p;

P∗={[CS, IT, Noto]}

≡

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(b) Q-tree for p+;

P∗={[CS, IT, Noto]}

Figure 9: Equivalence between the only Q-tree compatible with (1) or (2) and

one Q-tree (Tree 2c) compatible with the simplification p+
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Conclusion

I don’t really want to sell this as better than the other accounts,

because obviously it’s full of stipulations, but maybe this gives us a

more integrated framework to think about how sentences relate to

questions from a compositional perspective.

A couple topics I wish to explore further:

Coordination/Accommodation; how does Q-tree derivation interact

with updates of the CS? Should we e.g. trim the Q-tree from the

top-down?

Scalar implicatures: the presence of scalar items in HDs creates a

new asymmetry (Singh, 2008), possibly due to licensing constraints

on Exh (Fox & Spector, 2018), or on how alternatives passed as

argument to Exh are being pruned (Hénot-Mortier, 2023). Could

the latter constraint be better motivated by the current framework?
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Thank you very much for your

attention !

23



Selected references i

Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology,

20(3), 273–281. https://doi.org/10.1080/14640746808400161

Hamblin, C. L. (1973). Questions in montague english. Foundations of Language, 10(1), 41–53.

Hurford, J. R. (1974). Exclusive or inclusive disjunction. Foundations of language, 11(3), 409–411.

Stalnaker, R. (1974). Pragmatic presuppositions. In Context and content (pp. 47–62). Oxford

University Press.

Karttunen, L. (1977). Syntax and semantics of questions. Linguistics and Philosophy, 1(1), 3–44.

https://doi.org/10.1007/bf00351935

Groenendijk, J., & Stokhof, M. (1984).

Studies in the semantics of questions and the pragmatics of answers

(Doctoral dissertation) [(Unpublished doctoral dissertation)]. University of Amsterdam.

Heim, I. (1991). Artikel und definitheit. In A. Von Stechow & D. Wunderlich (Eds.),

Semantics: An international handbook of contemporary research (pp. 487–535).

Mouton de Gruyter.

Rooth, M. (1992). A theory of focus interpretation. Natural Language Semantics, 1(1), 75–116.

https://doi.org/10.1007/bf02342617

24

https://doi.org/10.1080/14640746808400161
https://doi.org/10.1007/bf00351935
https://doi.org/10.1007/bf02342617


Selected references ii

Van Kuppevelt, J. (1995). Main structure and side structure in discourse. Linguistics, 33(4),

809–833. https://doi.org/10.1515/ling.1995.33.4.809

Roberts, C. (1996). Information structure in discourse: Towards an integrated formal theory of

pragmatics. Semantics and Pragmatics, 5. https://doi.org/10.3765/sp.5.6

Simons, M. (2001). Disjunction and alternativeness. Linguistics and Philosophy, 24(5), 597–619.

https://doi.org/10.1023/a:1017597811833

von Fintel, K. (2001). Conditional strengthening: A case study in implicature [Unpublished

manuscript, MIT].
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Appendix



Some evidence that → and ∨ package information differently

Assuming the structure Depending on Q, p (Karttunen, 1977;

Kaufmann, 2016), where Q is a question and p a proposition, has to

match the cells of Q to the maximal answers of any QuD evoked by

p, the contrast (13a) vs. (13b) suggests France and Belgium can be

matched against Q in the disjunctive, but not the conditional case.

The improvement between (13b) and (13c) also implies that the

answers targeted by depending on Q, when p is conditional,

are the ones made available by the consequent of p (which is

appropriately disjunctive in (13c)).

(13) Depending on [how her accent sounds]Q ...

a. Mary comes from France or Belgium. p∨q
b. ?? if Mary doesn’t come from France she comes from Belgium. ¬p→q

c. ? if Mary doesn’t come from France she comes from Belgium or Québec.

¬p→(q∨r)
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How ∨ prevents Q-tree bracketing clashes

Two Q-trees T and T ′ have a bracketing clash if there is N ∈ T and

N ′ ∈ T ′ s.t. N = N ′ but the sets of children of N and N ′ differ.

If T and T ′ have such a clash, their disjunction is not a
Q-tree:

Let’s call C and C ′ the sets of nodes of resp. T and T ′ that induce

a bracketing clash. C and C ′ are s.t. C ̸= C ′, and have mothers N

and N ′ s.t. N = N ′.

Because ∨ achieves graph-union, T ∨T ′ will have a node N with

C ∪C ′ as children, and because C ̸= C ′, C ∪C ′ ⊃ C ,C ′.

And given that both C and C ′ are partitions of N, C ∪C ′ cannot be

a partition of N.

A generalization of this property is that, to be disjoined, T and T ′

must have parallel structures at least up to a certain point,

and any partitionings T and T ′ independently introduce to dot

induce bracketing clashes.
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Q-Redundancy in Long-Distance Hurford Disjunctions

Long-Distance Hurford Disjunctions differ from standard HDs in that

the strong disjunct (e.g. Noto) gets further disjoined with an

element (e.g. Paris) that is incompatible with the weak disjunct

(e.g. Italy).

(14) # Either Mary lives in Italy or she lives in Noto or Paris. p ∨ (p+∨ q)

(15) # Either Mary lives in Noto or Paris or she lives in Italy. (p+∨ q) ∨ p

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(a) Q-tree for either

p ∨ (p+∨ q) or (p+∨ q) ∨ p;

P∗={[CS, IT, Noto], [CS, FR, Paris]}

≡

CS

IT

Noto Rome

FR

Paris

DE

Berlin

(b) Q-tree for p+∨ q;

P∗={[CS, IT, Noto], [CS, FR, Paris]}

Figure 10: Equivalence between the only Q-tree compatible with (14) or (15)

and one Q-tree compatible with the simplification p+∨ q 31



Repairing Hurford sentences

The infelicitous HC (3) is repairable by at least (cf. Singh, 2008 &

(16)) and else-periphrasis (cf. Katzir and Singh, 2014 & (17)).

Yet, (18), which appears truth-conditionally equivalent to (17),

remains redundant. Interestingly, all 3 strategies can fix (1).

(16) If Mary does not live in Noto, at least she lives in Italy.

(17) If Mary does not live in Noto, she lives somewhere in Italy

that is not Noto.

(18) ?? If Mary does not live in Noto, she lives in Italy but does

not live in Noto.

We argue the repairs in (16) & (17) modify the consequent Q-tree

to make it fine-grained enough to satisfy Q-Relevance.
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At least

(16) If Mary does not live in Noto, at least she lives in Italy.

We assume that at least takes an antecedent proposition (here,

¬p+) as an extra argument, and returns Q-trees that are “at least”

as fine-grained as those of its prejacent (here, p), i.e., trees

structurally equal to a Q-tree of p up to a certain depth, and s.t.

any deeper layer corresponds to a partition induced by a set of

same-granularity alternatives to ¬p+.
We also assume at least updates the verifying nodes of its input

Q-tree s.t. the “verifying” property is recursively passed from a

verifying mother node to all its children.

Q-trees for at least Italy then end up

looking like Tree 11, and are thus

fine-grained enough to satisfy

Relevance in conditionals like (16).

CS

IT

Noto Rome

FR

Paris

DE

Berlin

Figure 11: Q-tree for at

least Italy
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Else-periphrasis

(17) If Mary does not live in Noto, she lives somewhere in Italy

that is not Noto.

somewhere in ... that is not Noto clearly introduces a sub-country

granularity, by e.g. taking Q-trees of ¬p+(cf. Fig. 4), and
intersecting the resulting verifying nodes with Italy. This again yields

city-level Q-trees that are fine-grained enough to satisfy

Q-Relevance.
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But

(18) ?? If Mary does not live in Noto, she lives in Italy but does not

live in Noto.

We suggest but not Noto affects the structure of the candidate

Q-tree introduced by Italy by adding city-level partitions and

marking the not Noto leaves as verifying, but crucially, retains the

verifying nodes of the original Q-tree (i.e., the Italy node).

This is justified by the idea that a statement of the form q but q’

can still be felt to answer a question of granularity q (e.g., which

country does Mary live in? ), with but q’ introducing an optional

precisification of the answer.

Because Italy is assumed to remain a verifying node in the

consequent of (18), Relevance is still violated.
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