
Exh and only don’t really compete – they just

answer different questions1

Adèle Hénot-Mortier (MIT)

May 20, 2025

35th meeting of Semantics and Linguistic Theory

1Many thanks to Amir Anvari, Athulya Aravind, Gennaro Chierchia, Danny Fox, Martin Hackl,
Nina Haslinger, Manfred Krifka, Viola Schmitt and Raven Zhang for their advising, feedback, or
input. Thanks also to the audiences of the BerlinBrnoVienna Workshop 2024, SuB29, and
AC2024 for relevant feedback on related projects. All mistakes are my own. 1



Two odd constructions

• Disjunctions featuring entailing disjuncts are typically odd.

(1) Hurford Disjunction1 (Paris ⊨ France)

# Jo grew up in France or Paris.

• And so are sequences of conditionals with entailing antecedents

and incompatible consequents.

(2) Sobel Sequence2 (friendly ∧ rude ⊨⊥)

# If Jo grew up in France she is friendly,

but if she grew up in Paris she is rude.

1Hurford, 1974, i.a.
2Sobel, 1970; Lewis, 1973; von Fintel, 2001, i.a.

2



Two odd constructions

• Disjunctions featuring entailing disjuncts are typically odd.

(1) Hurford Disjunction1 (Paris ⊨ France)

# Jo grew up in France or Paris.

• And so are sequences of conditionals with entailing antecedents

and incompatible consequents.

(2) Sobel Sequence2 (friendly ∧ rude ⊨⊥)

# If Jo grew up in France she is friendly,

but if she grew up in Paris she is rude.

1Hurford, 1974, i.a.
2Sobel, 1970; Lewis, 1973; von Fintel, 2001, i.a.

2



Assymetries in scalar Hurford Disjunctions

• Hurford Disjunctions with scalar disjuncts are fine if the weaker

disjunct precedes the stronger one (3a).

(3) “Scalar” Hurford Disjunctions3

a. Jo did some or all of the problems.

b. ?? Jo did all or some of the problems.

3Gazdar, 1979; Chierchia et al., 2009; Hénot-Mortier, 2023, i.a.

3



Assymetries in scalar Sobel Sequences

• Likewise, Sobel Sequences are fine if the weaker antecedent

precedes the stronger one.

(4) “Scalar” Sobel Sequences4

a. If Jo solved some of the problems she’ll fail,

but if she solved all she’ll pass.

b. ?5 If Jo solved all of the problems she’ll pass,

but if she solved some she’ll fail.

4Sobel, 1970; Lewis, 1973; von Fintel, 2001; Singh, 2008a; Ippolito, 2019, i.a.
5Contrast gets crisper with or vs. and.

4



Challenge 1: capturing the asymmetry

• In both Hurford and Sobel cases, infelicity seems to stem from the

entailment between contrasted stronger and weaker items,
which:

• creates “redundancy” in Hurford cases;

• creates a contradiction in Sobel cases.

• Dominant view: these issues can be fixed by exh,6 a “covert only”

which locally strengthens the weaker item to contradict the

stronger one. E.g., exh(some) = some but not all.

How to prevent exh from rescuing the “bad” cases?

6Singh, 2008a; Chierchia et al., 2009, i.a.

5



Challenge 1: capturing the asymmetry

• In both Hurford and Sobel cases, infelicity seems to stem from the

entailment between contrasted stronger and weaker items,
which:

• creates “redundancy” in Hurford cases;

• creates a contradiction in Sobel cases.

• Dominant view: these issues can be fixed by exh,6 a “covert only”

which locally strengthens the weaker item to contradict the

stronger one. E.g., exh(some) = some but not all.

How to prevent exh from rescuing the “bad” cases?

6Singh, 2008a; Chierchia et al., 2009, i.a.

5



Challenge 1: capturing the asymmetry

• In both Hurford and Sobel cases, infelicity seems to stem from the

entailment between contrasted stronger and weaker items,
which:

• creates “redundancy” in Hurford cases;

• creates a contradiction in Sobel cases.

• Dominant view: these issues can be fixed by exh,6 a “covert only”

which locally strengthens the weaker item to contradict the

stronger one. E.g., exh(some) = some but not all.

How to prevent exh from rescuing the “bad” cases?

6Singh, 2008a; Chierchia et al., 2009, i.a.

5



Challenge 1: capturing the asymmetry

• In both Hurford and Sobel cases, infelicity seems to stem from the

entailment between contrasted stronger and weaker items,
which:

• creates “redundancy” in Hurford cases;

• creates a contradiction in Sobel cases.

• Dominant view: these issues can be fixed by exh,6 a “covert only”

which locally strengthens the weaker item to contradict the

stronger one. E.g., exh(some) = some but not all.

How to prevent exh from rescuing the “bad” cases?

6Singh, 2008a; Chierchia et al., 2009, i.a.

5



Challenge 1: capturing the asymmetry

• In both Hurford and Sobel cases, infelicity seems to stem from the

entailment between contrasted stronger and weaker items,
which:

• creates “redundancy” in Hurford cases;

• creates a contradiction in Sobel cases.

• Dominant view: these issues can be fixed by exh,6 a “covert only”

which locally strengthens the weaker item to contradict the

stronger one. E.g., exh(some) = some but not all.

How to prevent exh from rescuing the “bad” cases?

6Singh, 2008a; Chierchia et al., 2009, i.a.

5



Sketching a solution to Challenge 1

How to prevent exh from rescuing the “bad” cases?

• The distribution of exh should be somehow constrained by

preceding material.7

• One view is that exh is not licensed if incrementally vacuous, which

happens in (5b).

• This makes exh an “asymmetric rescuer”.

(5) a. Jo did ✓exh(some) or all of the problems.

b. ?? Jo did all or ✗exh(some) of the problems.

• Now what about overt only?

7Singh, 2008b; Fox and Spector, 2018; Ippolito, 2019; Tomioka, 2021; Hénot-Mortier, 2023, i.a.

6



Only is a “symmetric rescuer”!

• Hurford Disjunctions with only are fine regardless of the ordering

of the disjuncts.8

(6) a. ?9 Jo did only some or all of the problems.

b. Jo did all or only some of the problems.

• Same holds for Sobel Sequences.10

(7) a. If Jo solved only some of the problems she’ll fail,

but if she solved all of the problems she’ll pass.

b. If Jo solved all of the problems she’ll pass,

but if she solved only some of the problems she’ll fail.

8Singh, 2008a; Fox and Spector, 2018; Ippolito, 2019; Tomioka, 2021; Krifka, 2024.
9? can be attributed to the felicity of (3a), which has same meaning as (6a) collapsing

presupposition and assertion, but is strictly simpler to produce.
10Singh, 2008a; Ippolito, 2019.

7



Only is a “symmetric rescuer”!

• Hurford Disjunctions with only are fine regardless of the ordering

of the disjuncts.8

(6) a. ?9 Jo did only some or all of the problems.

b. Jo did all or only some of the problems.

• Same holds for Sobel Sequences.10

(7) a. If Jo solved only some of the problems she’ll fail,

but if she solved all of the problems she’ll pass.

b. If Jo solved all of the problems she’ll pass,

but if she solved only some of the problems she’ll fail.

8Singh, 2008a; Fox and Spector, 2018; Ippolito, 2019; Tomioka, 2021; Krifka, 2024.
9? can be attributed to the felicity of (3a), which has same meaning as (6a) collapsing

presupposition and assertion, but is strictly simpler to produce.
10Singh, 2008a; Ippolito, 2019.

7



Challenge 2: capturing a contrast between exh and only

• Let’s assume we solved Challenge 1, i.e. we have a constraint on

exh explaining why exh(some) = some but not all is not allowed

in the 2nd disjunct/antecedent of (3b)/(4b).

Why would overt only escape this constraint, and

rescue both orderings?

8



Challenge 2: capturing a contrast between exh and only

• Let’s assume we solved Challenge 1, i.e. we have a constraint on

exh explaining why exh(some) = some but not all is not allowed

in the 2nd disjunct/antecedent of (3b)/(4b).

Why would overt only escape this constraint, and

rescue both orderings?

8



Goal for Today

• We will take for granted that (c)overt exhaustification rescues scalar

Hurford and Sobel cases.

• We will focus on explaining the contrast between exh and only in

the 2nd disjunct of scalar Hurford Disjunctions (SHDs):

(3b) Jo did all or ✗exh/✓only some of the problems.

• We will explain it using three core ingredients:

1. covert and overt exhaustification are compatible with distinct

Questions under Discussion (QuD11).

2. QuDs are raised incrementally and implicitely,12...

3. and must be felicitously addressed by following material.13

11Roberts, 1996.
12Ippolito, 2019; Zhang, 2022; Hénot-Mortier, to appear.
13Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

9



Goal for Today

• We will take for granted that (c)overt exhaustification rescues scalar

Hurford and Sobel cases.

• We will focus on explaining the contrast between exh and only in

the 2nd disjunct of scalar Hurford Disjunctions (SHDs):

(3b) Jo did all or ✗exh/✓only some of the problems.

• We will explain it using three core ingredients:

1. covert and overt exhaustification are compatible with distinct

Questions under Discussion (QuD11).

2. QuDs are raised incrementally and implicitely,12...

3. and must be felicitously addressed by following material.13

11Roberts, 1996.
12Ippolito, 2019; Zhang, 2022; Hénot-Mortier, to appear.
13Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

9



Goal for Today

• We will take for granted that (c)overt exhaustification rescues scalar

Hurford and Sobel cases.

• We will focus on explaining the contrast between exh and only in

the 2nd disjunct of scalar Hurford Disjunctions (SHDs):

(3b) Jo did all or ✗exh/✓only some of the problems.

• We will explain it using three core ingredients:

1. covert and overt exhaustification are compatible with distinct

Questions under Discussion (QuD11).

2. QuDs are raised incrementally and implicitely,12...

3. and must be felicitously addressed by following material.13

11Roberts, 1996.
12Ippolito, 2019; Zhang, 2022; Hénot-Mortier, to appear.
13Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

9



Goal for Today

• We will take for granted that (c)overt exhaustification rescues scalar

Hurford and Sobel cases.

• We will focus on explaining the contrast between exh and only in

the 2nd disjunct of scalar Hurford Disjunctions (SHDs):

(3b) Jo did all or ✗exh/✓only some of the problems.

• We will explain it using three core ingredients:

1. covert and overt exhaustification are compatible with distinct

Questions under Discussion (QuD11).

2. QuDs are raised incrementally and implicitely,12...

3. and must be felicitously addressed by following material.13

11Roberts, 1996.
12Ippolito, 2019; Zhang, 2022; Hénot-Mortier, to appear.
13Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

9



Goal for Today

• We will take for granted that (c)overt exhaustification rescues scalar

Hurford and Sobel cases.

• We will focus on explaining the contrast between exh and only in

the 2nd disjunct of scalar Hurford Disjunctions (SHDs):

(3b) Jo did all or ✗exh/✓only some of the problems.

• We will explain it using three core ingredients:

1. covert and overt exhaustification are compatible with distinct

Questions under Discussion (QuD11).

2. QuDs are raised incrementally and implicitely,12...

3. and must be felicitously addressed by following material.13

11Roberts, 1996.
12Ippolito, 2019; Zhang, 2022; Hénot-Mortier, to appear.
13Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

9



Goal for Today

• We will take for granted that (c)overt exhaustification rescues scalar

Hurford and Sobel cases.

• We will focus on explaining the contrast between exh and only in

the 2nd disjunct of scalar Hurford Disjunctions (SHDs):

(3b) Jo did all or ✗exh/✓only some of the problems.

• We will explain it using three core ingredients:

1. covert and overt exhaustification are compatible with distinct

Questions under Discussion (QuD11).

2. QuDs are raised incrementally and implicitely,12...

3. and must be felicitously addressed by following material.13

11Roberts, 1996.
12Ippolito, 2019; Zhang, 2022; Hénot-Mortier, to appear.
13Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

9



Previous accounts

TL;DR: capturing the data at stake under standard assumptions and

limited stipulations is challenging.

10



Singh (2008a): assumptions

• Both exh and only assert their prejacent and the negation of

non-weaker relevant alternatives, i.e. have same at-issue

contributions.

• exh is presuppositionless; while only presupposes that an alternative

different from its prejacent is made noteworthy; i.e. only has a

strictly stronger presupposition.

(8) exh(some) =

[
P :

A : some but not all

]
(9) only(some) =

[
P : ∃X ∈ ALT (some) salient and ̸= some

A : some but not all

]

11



Singh (2008a): assumptions

• Both exh and only assert their prejacent and the negation of

non-weaker relevant alternatives, i.e. have same at-issue

contributions.

• exh is presuppositionless; while only presupposes that an alternative

different from its prejacent is made noteworthy; i.e. only has a

strictly stronger presupposition.

(8) exh(some) =

[
P :

A : some but not all

]
(9) only(some) =

[
P : ∃X ∈ ALT (some) salient and ̸= some

A : some but not all

]

11



Singh (2008a): assumptions

• Both exh and only assert their prejacent and the negation of

non-weaker relevant alternatives, i.e. have same at-issue

contributions.

• exh is presuppositionless; while only presupposes that an alternative

different from its prejacent is made noteworthy; i.e. only has a

strictly stronger presupposition.

(8) exh(some) =

[
P :

A : some but not all

]
(9) only(some) =

[
P : ∃X ∈ ALT (some) salient and ̸= some

A : some but not all

]

11



Singh (2008a): proposal

• Exh and only compete under Local Maximize Presupposition

(LMP!).

• Only’s presupposition is verified whenever its prejacent is preceded

by one of its alternatives.

• In such cases, only should be preferred over exh as per LMP!

(10) Jo did all or

 #some
LMP!✗exh(some)
LMP!✓only(some)

 of the problems.

. Shortcomings: only’s entry is non-standard, and this LMP! story

cannot fully replace another constraint on exh needed for other

cases.14

14Fox and Spector, 2018.

12



Singh (2008a): proposal

• Exh and only compete under Local Maximize Presupposition

(LMP!).

• Only’s presupposition is verified whenever its prejacent is preceded

by one of its alternatives.

• In such cases, only should be preferred over exh as per LMP!

(10) Jo did all or

 #some
LMP!✗exh(some)
LMP!✓only(some)

 of the problems.

. Shortcomings: only’s entry is non-standard, and this LMP! story

cannot fully replace another constraint on exh needed for other

cases.14

14Fox and Spector, 2018.

12



Singh (2008a): proposal

• Exh and only compete under Local Maximize Presupposition

(LMP!).

• Only’s presupposition is verified whenever its prejacent is preceded

by one of its alternatives.

• In such cases, only should be preferred over exh as per LMP!

(10) Jo did all or

 #some
LMP!✗exh(some)
LMP!✓only(some)

 of the problems.

. Shortcomings: only’s entry is non-standard, and this LMP! story

cannot fully replace another constraint on exh needed for other

cases.14

14Fox and Spector, 2018.

12



Singh (2008a): proposal

• Exh and only compete under Local Maximize Presupposition

(LMP!).

• Only’s presupposition is verified whenever its prejacent is preceded

by one of its alternatives.

• In such cases, only should be preferred over exh as per LMP!

(10) Jo did all or

 #some
LMP!✗exh(some)
LMP!✓only(some)

 of the problems.

. Shortcomings: only’s entry is non-standard, and this LMP! story

cannot fully replace another constraint on exh needed for other

cases.14

14Fox and Spector, 2018.

12



Ippolito (2019): assumptions

• F-marked sentences evoke Structured Sets of Alternatives (SSAs),

trees whose nodes are alternatives to the sentence and whose

branches are induced by ⊨.

• Salient alternatives are defined as mothers and siblings of the

asserted alternative.

∃

∀ ∃∧¬∀≜ ∃̃

¬∃

Figure 1: SSA evoked by all.

13



Ippolito (2019): assumptions

• F-marked sentences evoke Structured Sets of Alternatives (SSAs),

trees whose nodes are alternatives to the sentence and whose

branches are induced by ⊨.

• Salient alternatives are defined as mothers and siblings of the

asserted alternative.

∃

∀ ∃∧¬∀≜ ∃̃

¬∃

Figure 1: SSA evoked by all.

13



Ippolito (2019): assumptions

• F-marked sentences evoke Structured Sets of Alternatives (SSAs),

trees whose nodes are alternatives to the sentence and whose

branches are induced by ⊨.

• Salient alternatives are defined as mothers and siblings of the

asserted alternative.

∃

∀ ∃∧¬∀≜ ∃̃

¬∃

Figure 1: SSA evoked by all.

13



Ippolito (2019): proposal

• Economy constraint on covert operations: exh cannot be

inserted if it results in a meaning equivalent to an alternative made

salient by a preceding SSA.

• In SHDs, all in the 1st disjunct makes some but not all salient.

• Because exh(some) = some but not all, exh cannot be inserted in

the 2nd disjunct of a SHD, as per Economy.

• Only can, because it’s overt.

. Shortcomings:

• the structural definition of salience is stipulated;

• why should the above Economy condition care about covertness?

some but not all/only some appear most costly than exh(some)!

14



Ippolito (2019): proposal

• Economy constraint on covert operations: exh cannot be

inserted if it results in a meaning equivalent to an alternative made

salient by a preceding SSA.

• In SHDs, all in the 1st disjunct makes some but not all salient.

• Because exh(some) = some but not all, exh cannot be inserted in

the 2nd disjunct of a SHD, as per Economy.

• Only can, because it’s overt.

. Shortcomings:

• the structural definition of salience is stipulated;

• why should the above Economy condition care about covertness?

some but not all/only some appear most costly than exh(some)!

14



Ippolito (2019): proposal

• Economy constraint on covert operations: exh cannot be

inserted if it results in a meaning equivalent to an alternative made

salient by a preceding SSA.

• In SHDs, all in the 1st disjunct makes some but not all salient.

• Because exh(some) = some but not all, exh cannot be inserted in

the 2nd disjunct of a SHD, as per Economy.

• Only can, because it’s overt.

. Shortcomings:

• the structural definition of salience is stipulated;

• why should the above Economy condition care about covertness?

some but not all/only some appear most costly than exh(some)!

14



Ippolito (2019): proposal

• Economy constraint on covert operations: exh cannot be

inserted if it results in a meaning equivalent to an alternative made

salient by a preceding SSA.

• In SHDs, all in the 1st disjunct makes some but not all salient.

• Because exh(some) = some but not all, exh cannot be inserted in

the 2nd disjunct of a SHD, as per Economy.

• Only can, because it’s overt.

. Shortcomings:

• the structural definition of salience is stipulated;

• why should the above Economy condition care about covertness?

some but not all/only some appear most costly than exh(some)!

14



Ippolito (2019): proposal

• Economy constraint on covert operations: exh cannot be

inserted if it results in a meaning equivalent to an alternative made

salient by a preceding SSA.

• In SHDs, all in the 1st disjunct makes some but not all salient.

• Because exh(some) = some but not all, exh cannot be inserted in

the 2nd disjunct of a SHD, as per Economy.

• Only can, because it’s overt.

. Shortcomings:

• the structural definition of salience is stipulated;

• why should the above Economy condition care about covertness?

some but not all/only some appear most costly than exh(some)!

14



Ippolito (2019): proposal

• Economy constraint on covert operations: exh cannot be

inserted if it results in a meaning equivalent to an alternative made

salient by a preceding SSA.

• In SHDs, all in the 1st disjunct makes some but not all salient.

• Because exh(some) = some but not all, exh cannot be inserted in

the 2nd disjunct of a SHD, as per Economy.

• Only can, because it’s overt.

. Shortcomings:

• the structural definition of salience is stipulated;

• why should the above Economy condition care about covertness?

some but not all/only some appear most costly than exh(some)!

14



Desiderata and next steps

Building on Ippolito’s SSAs, and on Singh’s intuition that exh
and only semantically differ, we propose a story requiring

less initial assumptions.

• We ground the difference between exh and only in the

independently motivated semantics of these operators.

(C)overtness will not play a role.

• In place of LMP!/Economy, we recycle a constraint on

presuppositions and the QuD, deriving distinct licensing conditions

for exh and only.

• Under this view, exh and only don’t compete – they are just used to

answer different implicit QuDs!

15



Desiderata and next steps

Building on Ippolito’s SSAs, and on Singh’s intuition that exh
and only semantically differ, we propose a story requiring

less initial assumptions.

• We ground the difference between exh and only in the

independently motivated semantics of these operators.

(C)overtness will not play a role.

• In place of LMP!/Economy, we recycle a constraint on

presuppositions and the QuD, deriving distinct licensing conditions

for exh and only.

• Under this view, exh and only don’t compete – they are just used to

answer different implicit QuDs!

15



Desiderata and next steps

Building on Ippolito’s SSAs, and on Singh’s intuition that exh
and only semantically differ, we propose a story requiring

less initial assumptions.

• We ground the difference between exh and only in the

independently motivated semantics of these operators.

(C)overtness will not play a role.

• In place of LMP!/Economy, we recycle a constraint on

presuppositions and the QuD, deriving distinct licensing conditions

for exh and only.

• Under this view, exh and only don’t compete – they are just used to

answer different implicit QuDs!

15



Desiderata and next steps

Building on Ippolito’s SSAs, and on Singh’s intuition that exh
and only semantically differ, we propose a story requiring

less initial assumptions.

• We ground the difference between exh and only in the

independently motivated semantics of these operators.

(C)overtness will not play a role.

• In place of LMP!/Economy, we recycle a constraint on

presuppositions and the QuD, deriving distinct licensing conditions

for exh and only.

• Under this view, exh and only don’t compete – they are just used to

answer different implicit QuDs!

15



Exhaustification and the QuD

TL;DR: exh and only are used to answer different questions, which can

be linked to how they divide presupposition and assertion.

16



Assumptions about (c)overt exhaustifiers

• We assume a covert, optional, presuppositional exhaustification

operator pex.15

• We use a standard entry for only.

(11) pex(some) =

[
P : not all

A : some

]
(12) only(some) =

[
P : some

A : not all

]

• Let’s see how these operators interact with overt QuDs.

15Bassi et al., 2021.

17



Assumptions about (c)overt exhaustifiers

• We assume a covert, optional, presuppositional exhaustification

operator pex.15

• We use a standard entry for only.

(11) pex(some) =

[
P : not all

A : some

]
(12) only(some) =

[
P : some

A : not all

]

• Let’s see how these operators interact with overt QuDs.

15Bassi et al., 2021.

17



Assumptions about (c)overt exhaustifiers

• We assume a covert, optional, presuppositional exhaustification

operator pex.15

• We use a standard entry for only.

(11) pex(some) =

[
P : not all

A : some

]
(12) only(some) =

[
P : some

A : not all

]

• Let’s see how these operators interact with overt QuDs.

15Bassi et al., 2021.

17



Assumptions about (c)overt exhaustifiers

• We assume a covert, optional, presuppositional exhaustification

operator pex.15

• We use a standard entry for only.

(11) pex(some) =

[
P : not all

A : some

]
(12) only(some) =

[
P : some

A : not all

]

• Let’s see how these operators interact with overt QuDs.

15Bassi et al., 2021.

17



Whether-some questions

• If the QuD is ?some, answering with a bare some is fine, some but

not all is okay; see (13a-b). Both assert some.

• Only some, which presupposes some, is out; see (13c).

(13) Did Jo solve some of the problems, or none of them? {∃,¬∃}
a. – Jo solved some of the problems.

b. ? – Jo solved some but not all of the problems.

c. # – Jo solved only some of the problems.

• In line with the idea that sentences should not settle overt QuDs

via their presupposition.16

16Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

18



Whether-some questions

• If the QuD is ?some, answering with a bare some is fine, some but

not all is okay; see (13a-b). Both assert some.

• Only some, which presupposes some, is out; see (13c).

(13) Did Jo solve some of the problems, or none of them? {∃,¬∃}
a. – Jo solved some of the problems.

b. ? – Jo solved some but not all of the problems.

c. # – Jo solved only some of the problems.

• In line with the idea that sentences should not settle overt QuDs

via their presupposition.16

16Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

18



Whether-some questions

• If the QuD is ?some, answering with a bare some is fine, some but

not all is okay; see (13a-b). Both assert some.

• Only some, which presupposes some, is out; see (13c).

(13) Did Jo solve some of the problems, or none of them? {∃,¬∃}
a. – Jo solved some of the problems.

b. ? – Jo solved some but not all of the problems.

c. # – Jo solved only some of the problems.

• In line with the idea that sentences should not settle overt QuDs

via their presupposition.16

16Heim, 2015; Aravind et al., 2022; Doron and Wehbe, 2024.

18



Whether-all questions

• If the QuD is ?all, answering with all or only some is fine, and

some but not all is okay; see (14a-c). All options assert either all,

or not all.

• F-marked SOME, which can be understood as forcing pex and thus

presupposes not all, is out; see (14d).

(14) Did Jo solve all of the problems, or not all of them? {∀,¬∀}
a. – Jo solved all of the problems.

b. – Jo solved only some of the problems.

c. ? – Jo solved some but not all of the problems.

d. ?? – Jo solved SOME of the problems.

• Again in line with the idea that sentences should not settle overt

QuDs via their presupposition!

19



Whether-all questions

• If the QuD is ?all, answering with all or only some is fine, and

some but not all is okay; see (14a-c). All options assert either all,

or not all.

• F-marked SOME, which can be understood as forcing pex and thus

presupposes not all, is out; see (14d).

(14) Did Jo solve all of the problems, or not all of them? {∀,¬∀}
a. – Jo solved all of the problems.

b. – Jo solved only some of the problems.

c. ? – Jo solved some but not all of the problems.

d. ?? – Jo solved SOME of the problems.

• Again in line with the idea that sentences should not settle overt

QuDs via their presupposition!

19



Whether-all questions

• If the QuD is ?all, answering with all or only some is fine, and

some but not all is okay; see (14a-c). All options assert either all,

or not all.

• F-marked SOME, which can be understood as forcing pex and thus

presupposes not all, is out; see (14d).

(14) Did Jo solve all of the problems, or not all of them? {∀,¬∀}
a. – Jo solved all of the problems.

b. – Jo solved only some of the problems.

c. ? – Jo solved some but not all of the problems.

d. ?? – Jo solved SOME of the problems.

• Again in line with the idea that sentences should not settle overt

QuDs via their presupposition!

19



Summary

Answer →
QuD ↓

some only(some) pex(some)17
some but not all

=exh(some)18

?some ✓ ✗ ✓ meh

?all ✗ ✓ ✗ meh

• The compatibility between pexed/onlyed assertions and QuDs is

constrained by the idea that QuDs should not be presuppositionally

settled.

We adapt this to cover SHDs like (3b), arguing that
their 1st disjunct evokes a QuD which must be
felicitously addressed by their 2nd disjunct.

18We extrapolated a bit for pex here, because it remains optional in simplex sentences. But it will

be needed to rescue SHDs.
18pex(some), unlike exh(some) is predicted to be out under a ?all QuD. This will turn out crucial

for our account to work.

20



Summary

Answer →
QuD ↓

some only(some) pex(some)17
some but not all

=exh(some)18

?some ✓ ✗ ✓ meh

?all ✗ ✓ ✗ meh

• The compatibility between pexed/onlyed assertions and QuDs is

constrained by the idea that QuDs should not be presuppositionally

settled.

We adapt this to cover SHDs like (3b), arguing that
their 1st disjunct evokes a QuD which must be
felicitously addressed by their 2nd disjunct.

18We extrapolated a bit for pex here, because it remains optional in simplex sentences. But it will

be needed to rescue SHDs.
18pex(some), unlike exh(some) is predicted to be out under a ?all QuD. This will turn out crucial

for our account to work.

20



Summary

Answer →
QuD ↓

some only(some) pex(some)17
some but not all

=exh(some)18

?some ✓ ✗ ✓ meh

?all ✗ ✓ ✗ meh

• The compatibility between pexed/onlyed assertions and QuDs is

constrained by the idea that QuDs should not be presuppositionally

settled.

We adapt this to cover SHDs like (3b), arguing that
their 1st disjunct evokes a QuD which must be
felicitously addressed by their 2nd disjunct.

18We extrapolated a bit for pex here, because it remains optional in simplex sentences. But it will

be needed to rescue SHDs.
18pex(some), unlike exh(some) is predicted to be out under a ?all QuD. This will turn out crucial

for our account to work.

20



Incremental implicit QuDs

TL;DR: individual disjuncts evoke implicit QuDs “on-the-fly”, which

provides strong cues about what the global QuD should look like.

21



Relating disjuncts to question-answer pairs

• We want to relate SHDs to pairs made of:

• an overt QuD like Did Jo solve all of the problems?

• and a follow-up assertion like Jo solved pex/only some of the

problems.

• We need to devise a model of the QuD evoked by all...

• and to flesh out the interaction between this QuD and the 2nd

disjunct (only/pex) some, in particular when it comes to

presuppositions.

22



Relating disjuncts to question-answer pairs

• We want to relate SHDs to pairs made of:

• an overt QuD like Did Jo solve all of the problems?

• and a follow-up assertion like Jo solved pex/only some of the

problems.

• We need to devise a model of the QuD evoked by all...

• and to flesh out the interaction between this QuD and the 2nd

disjunct (only/pex) some, in particular when it comes to

presuppositions.

22



Relating disjuncts to question-answer pairs

• We want to relate SHDs to pairs made of:

• an overt QuD like Did Jo solve all of the problems?

• and a follow-up assertion like Jo solved pex/only some of the

problems.

• We need to devise a model of the QuD evoked by all...

• and to flesh out the interaction between this QuD and the 2nd

disjunct (only/pex) some, in particular when it comes to

presuppositions.

22



Relating disjuncts to question-answer pairs

• We want to relate SHDs to pairs made of:

• an overt QuD like Did Jo solve all of the problems?

• and a follow-up assertion like Jo solved pex/only some of the

problems.

• We need to devise a model of the QuD evoked by all...

• and to flesh out the interaction between this QuD and the 2nd

disjunct (only/pex) some, in particular when it comes to

presuppositions.

22



Relating disjuncts to question-answer pairs

• We want to relate SHDs to pairs made of:

• an overt QuD like Did Jo solve all of the problems?

• and a follow-up assertion like Jo solved pex/only some of the

problems.

• We need to devise a model of the QuD evoked by all...

• and to flesh out the interaction between this QuD and the 2nd

disjunct (only/pex) some, in particular when it comes to

presuppositions.

22



Implicit QuDs

• Simplex sentences (e.g. disjuncts) evoke the implicit QuDs they

could felicitously answer.19

• These QuDs take the form of nested partitions of the Context

Set (CS), graphically represented as trees.20

Context Set

∀ ¬∀

(a)

Context Set

∀ ∃∧¬∀≜ ∃̃ ¬∃

(b)

Context Set

∃

∀ ∃∧¬∀≜ ∃̃

¬∃

(c)

Figure 2: Possible QuDs evoked by Jo solved all of the problems.

19Zhang, 2022.
20Close in spirit to Ippolito’s SSAs and Zhang’s QuD-trees. This complicates the story for SHDs,

but (i) explains the subtlety of the contrast in (3), and (ii) accounts for Sobel cases, plus cases

involving Distant Entailing Alternatives and Subdomain Alternatives. See Appendix. 23



Implicit QuDs

• Simplex sentences (e.g. disjuncts) evoke the implicit QuDs they

could felicitously answer.19

• These QuDs take the form of nested partitions of the Context

Set (CS), graphically represented as trees.20

Context Set

∀ ¬∀

(a)

Context Set

∀ ∃∧¬∀≜ ∃̃ ¬∃

(b)

Context Set

∃

∀ ∃∧¬∀≜ ∃̃

¬∃

(c)

Figure 2: Possible QuDs evoked by Jo solved all of the problems.

19Zhang, 2022.
20Close in spirit to Ippolito’s SSAs and Zhang’s QuD-trees. This complicates the story for SHDs,

but (i) explains the subtlety of the contrast in (3), and (ii) accounts for Sobel cases, plus cases

involving Distant Entailing Alternatives and Subdomain Alternatives. See Appendix. 23



Incremental processing of disjunctive QuDs

• Disjuncts usually have to answer the same QuD.21

• Our interpretation: the QuD of a disjunction results from the

merger of QuDs evoked by its constitutive disjuncts.

• After computing some QuD Q evoked by the 1st disjunct, we know

that the global QuD should be a (non-strict) “supertree” of Q!

Context Set

∀ ¬∀

...

(a)

Context Set

∀ ∃̃

...

¬∃

(b)

Context Set

∃

∀ ∃̃

...

¬∃

(c)

Figure 3: “Supertrees” of QuD trees evoked by Jo solved all of the problems.

21Simons, 2001; Westera, 2020; Zhang, 2022.
24



Incremental processing of disjunctive QuDs

• Disjuncts usually have to answer the same QuD.21

• Our interpretation: the QuD of a disjunction results from the

merger of QuDs evoked by its constitutive disjuncts.

• After computing some QuD Q evoked by the 1st disjunct, we know

that the global QuD should be a (non-strict) “supertree” of Q!

Context Set

∀ ¬∀

...

(a)

Context Set

∀ ∃̃

...

¬∃

(b)

Context Set

∃

∀ ∃̃

...

¬∃

(c)

Figure 3: “Supertrees” of QuD trees evoked by Jo solved all of the problems.

21Simons, 2001; Westera, 2020; Zhang, 2022.
24



Incremental processing of disjunctive QuDs

• Disjuncts usually have to answer the same QuD.21

• Our interpretation: the QuD of a disjunction results from the

merger of QuDs evoked by its constitutive disjuncts.

• After computing some QuD Q evoked by the 1st disjunct, we know

that the global QuD should be a (non-strict) “supertree” of Q!

Context Set

∀ ¬∀

...

(a)

Context Set

∀ ∃̃

...

¬∃

(b)

Context Set

∃

∀ ∃̃

...

¬∃

(c)

Figure 3: “Supertrees” of QuD trees evoked by Jo solved all of the problems.

21Simons, 2001; Westera, 2020; Zhang, 2022.
24



Effect of accommodation on QuD trees

• We now have a model of QuDs evoked by the 1st disjunct, and how

they shape the global QuD.

• How do presuppositions introduced by the 2nd disjunct interact with

such implicit, incremental QuDs?

• Accommodating a presupposition p typically amounts to

intersecting the CS with p.

• Given that QuDs are nested partitions of the CS (=trees),

accommodating p on a QuD tree T amounts to intersecting each

node of T with p, removing empty nodes, dangling or unary

branches. We call the result T ∩p.

• We now detail how not all (presupposition of pex(some)) and

some (presupposition of only(some)) get accomodated on the

QuDs from Figure 3.

25



Effect of accommodation on QuD trees

• We now have a model of QuDs evoked by the 1st disjunct, and how

they shape the global QuD.

• How do presuppositions introduced by the 2nd disjunct interact with

such implicit, incremental QuDs?

• Accommodating a presupposition p typically amounts to

intersecting the CS with p.

• Given that QuDs are nested partitions of the CS (=trees),

accommodating p on a QuD tree T amounts to intersecting each

node of T with p, removing empty nodes, dangling or unary

branches. We call the result T ∩p.

• We now detail how not all (presupposition of pex(some)) and

some (presupposition of only(some)) get accomodated on the

QuDs from Figure 3.

25



Effect of accommodation on QuD trees

• We now have a model of QuDs evoked by the 1st disjunct, and how

they shape the global QuD.

• How do presuppositions introduced by the 2nd disjunct interact with

such implicit, incremental QuDs?

• Accommodating a presupposition p typically amounts to

intersecting the CS with p.

• Given that QuDs are nested partitions of the CS (=trees),

accommodating p on a QuD tree T amounts to intersecting each

node of T with p, removing empty nodes, dangling or unary

branches. We call the result T ∩p.

• We now detail how not all (presupposition of pex(some)) and

some (presupposition of only(some)) get accomodated on the

QuDs from Figure 3.

25



Effect of accommodation on QuD trees

• We now have a model of QuDs evoked by the 1st disjunct, and how

they shape the global QuD.

• How do presuppositions introduced by the 2nd disjunct interact with

such implicit, incremental QuDs?

• Accommodating a presupposition p typically amounts to

intersecting the CS with p.

• Given that QuDs are nested partitions of the CS (=trees),

accommodating p on a QuD tree T amounts to intersecting each

node of T with p, removing empty nodes, dangling or unary

branches. We call the result T ∩p.

• We now detail how not all (presupposition of pex(some)) and

some (presupposition of only(some)) get accomodated on the

QuDs from Figure 3.

25



Effect of accommodation on QuD trees

• We now have a model of QuDs evoked by the 1st disjunct, and how

they shape the global QuD.

• How do presuppositions introduced by the 2nd disjunct interact with

such implicit, incremental QuDs?

• Accommodating a presupposition p typically amounts to

intersecting the CS with p.

• Given that QuDs are nested partitions of the CS (=trees),

accommodating p on a QuD tree T amounts to intersecting each

node of T with p, removing empty nodes, dangling or unary

branches. We call the result T ∩p.

• We now detail how not all (presupposition of pex(some)) and

some (presupposition of only(some)) get accomodated on the

QuDs from Figure 3.

25



Accommodating not all on our incremental ?all QuD

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

of the problems.

CS

∀ ¬∀

...

(a)

CS

∀ ∃̃

...

¬∃

(b)

CS

∃

∀ ∃̃

...

¬∃

(c)

Figure 4: “Supertrees” of QuD trees evoked by Jo solved all of the problems.

Prior to accommodating not all.

• Intuition: the not all presupposition carried by pex(some)

addresses the ?all QuDs trees pretty well, i.e. removes a lot of

their initial structure! 26



Accommodating not all on our incremental ?all QuD

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

of the problems.

¬∀

�∀ ¬∀

...

(a)

¬∀

�∀ ∃̃

...

¬∃

(b)

¬∀

∃∧¬∀

�∀ ∃̃

...

¬∃

(c)

Figure 4: Accommodating not all on the “supertrees” of Jo solved all of the

problems. Each node gets intersected with not all.

• Intuition: the not all presupposition carried by pex(some)

addresses the ?all QuDs trees pretty well, i.e. removes a lot of

their initial structure! 26



Accommodating not all on our incremental ?all QuD

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b) / (c)

Figure 4: Accommodating not all on the “supertrees” of Jo solved all of the

problems. After removing empty nodes, dangling and unary branches.

• Intuition: the not all presupposition carried by pex(some)

addresses the ?all QuDs trees pretty well, i.e. removes a lot of

their initial structure!

26



Accommodating some on our incremental ?all QuD

(6b) Jo did all︸︷︷︸
QuD(all)

or only(some)︸ ︷︷ ︸
P : some

of the problems.

CS

∀ ¬∀

...

(a)

CS

∀ ∃̃

...

¬∃

(b)

CS

∃

∀ ∃̃

...

¬∃

(c)

Figure 5: “Supertrees” of QuD trees evoked by Jo solved all of the problems.

Prior to accommodating some.

• Intuition: the some presupposition carried by only(some) addresses

the ?all QuD trees differently than not all. The resulting tree, is s.t.

some structure is left to be addressed by only(some)’s assertion! 27



Accommodating some on our incremental ?all QuD

(6b) Jo did all︸︷︷︸
QuD(all)

or only(some)︸ ︷︷ ︸
P : some

of the problems.

∃

∀ ¬∀∧∃

...

(a)

∃

∀ ∃̃

...

��¬∃

(b)

∃

∃

∀ ∃̃

...

��¬∃

(c)

Figure 5: Accommodating some on the “supertrees” of Jo solved all of the

problems. Each node gets intersected with some.

• Intuition: the some presupposition carried by only(some) addresses

the ?all QuD trees differently than not all. The resulting tree, is s.t.

some structure is left to be addressed by only(some)’s assertion! 27



Accommodating some on our incremental ?all QuD

(6b) Jo did all︸︷︷︸
QuD(all)

or only(some)︸ ︷︷ ︸
P : some

of the problems.

∃

∀ ∃̃

...

(a) / (b) / (c)

Figure 5: Accommodating some on the “supertrees” of Jo solved all of the

problems. After removing empty nodes, dangling and unary branches.

• Intuition: the some presupposition carried by only(some) addresses

the ?all QuD trees differently than not all. The resulting tree, is s.t.

some structure is left to be addressed by only(some)’s assertion!

27



Felicitously addressing (implicit)

QuDs

TL;DR: The distribution of pex and only in the 2nd disjunct of SHDs can

be captured assuming their presuppositions should not trivialize the

incremental QuD evoked by the 1st disjunct.

28



Felicitously addressing overt QuDs

• The idea that QuDs should not be settled by presuppositions is

implemented by the Post Accommodation Informativity (PAI)
condition:22

• If S presupposes p and intends to answer a question Q (partition of

the CS), S has to be informative w.r.t. Q after the CS gets

updated with p.

• A sentence S is informative w.r.t. Q if it allows to rule out at least

one cell in Q.23

22Doron and Wehbe, 2024.
23Roberts, 2012.

29



Felicitously addressing overt QuDs

• The idea that QuDs should not be settled by presuppositions is

implemented by the Post Accommodation Informativity (PAI)
condition:22

• If S presupposes p and intends to answer a question Q (partition of

the CS), S has to be informative w.r.t. Q after the CS gets

updated with p.

• A sentence S is informative w.r.t. Q if it allows to rule out at least

one cell in Q.23

22Doron and Wehbe, 2024.
23Roberts, 2012.

29



Felicitously addressing overt QuDs

• The idea that QuDs should not be settled by presuppositions is

implemented by the Post Accommodation Informativity (PAI)
condition:22

• If S presupposes p and intends to answer a question Q (partition of

the CS), S has to be informative w.r.t. Q after the CS gets

updated with p.

• A sentence S is informative w.r.t. Q if it allows to rule out at least

one cell in Q.23

22Doron and Wehbe, 2024.
23Roberts, 2012.

29



Felicitously addressing implicit, incremental QuDs

• We adapt PAI to incremental implicit QuDs.

• Given a partial LF C evoking a set of possible QuD trees TC , and a

continuation S of C presupposing p, for any QuD tree T ∈ TC , S

should rule-out a node in T ∩p (=T updated with p).

• In our target case (3b), C is all or ..., TC is Figure 3 and p is either

not all (if S is pex(some)) or some (if S is only(some)).

• We have already done most of the heavy lifting in the previous

Section, when we accommodated not all/some on the ?all

incremental QuD trees.

• Let’s check Incremental PAI on the resulting structures.

30



Felicitously addressing implicit, incremental QuDs

• We adapt PAI to incremental implicit QuDs.

• Given a partial LF C evoking a set of possible QuD trees TC , and a

continuation S of C presupposing p, for any QuD tree T ∈ TC , S

should rule-out a node in T ∩p (=T updated with p).

• In our target case (3b), C is all or ..., TC is Figure 3 and p is either

not all (if S is pex(some)) or some (if S is only(some)).

• We have already done most of the heavy lifting in the previous

Section, when we accommodated not all/some on the ?all

incremental QuD trees.

• Let’s check Incremental PAI on the resulting structures.

30



Felicitously addressing implicit, incremental QuDs

• We adapt PAI to incremental implicit QuDs.

• Given a partial LF C evoking a set of possible QuD trees TC , and a

continuation S of C presupposing p, for any QuD tree T ∈ TC , S

should rule-out a node in T ∩p (=T updated with p).

• In our target case (3b), C is all or ..., TC is Figure 3 and p is either

not all (if S is pex(some)) or some (if S is only(some)).

• We have already done most of the heavy lifting in the previous

Section, when we accommodated not all/some on the ?all

incremental QuD trees.

• Let’s check Incremental PAI on the resulting structures.

30



Felicitously addressing implicit, incremental QuDs

• We adapt PAI to incremental implicit QuDs.

• Given a partial LF C evoking a set of possible QuD trees TC , and a

continuation S of C presupposing p, for any QuD tree T ∈ TC , S

should rule-out a node in T ∩p (=T updated with p).

• In our target case (3b), C is all or ..., TC is Figure 3 and p is either

not all (if S is pex(some)) or some (if S is only(some)).

• We have already done most of the heavy lifting in the previous

Section, when we accommodated not all/some on the ?all

incremental QuD trees.

• Let’s check Incremental PAI on the resulting structures.

30



Felicitously addressing implicit, incremental QuDs

• We adapt PAI to incremental implicit QuDs.

• Given a partial LF C evoking a set of possible QuD trees TC , and a

continuation S of C presupposing p, for any QuD tree T ∈ TC , S

should rule-out a node in T ∩p (=T updated with p).

• In our target case (3b), C is all or ..., TC is Figure 3 and p is either

not all (if S is pex(some)) or some (if S is only(some)).

• We have already done most of the heavy lifting in the previous

Section, when we accommodated not all/some on the ?all

incremental QuD trees.

• Let’s check Incremental PAI on the resulting structures.

30



Deriving all or only(some)

(6b) Jo did all︸︷︷︸
QuD(all)

or only(some)︸ ︷︷ ︸
P : some

A : not all

of the problems.

∃

∀ ∃̃

...

Figure 6: Checking Incremental

PAI after accommodating some on

the “supertrees” of Jo solved all of

the problems. Nodes compatible

with the assertion not all are

underlined.

• In the only possible Tree 6, the

assertion of only some, not

all, rules out the ∀-node.
• Incremental PAI is satisfied!

And (6b) is ruled-in.

31



Deriving all or only(some)

(6b) Jo did all︸︷︷︸
QuD(all)

or only(some)︸ ︷︷ ︸
P : some

A : not all

of the problems.

∃

∀ ∃̃

...

Figure 6: Checking Incremental

PAI after accommodating some on

the “supertrees” of Jo solved all of

the problems. Nodes compatible

with the assertion not all are

underlined.

• In the only possible Tree 6, the

assertion of only some, not

all, rules out the ∀-node.
• Incremental PAI is satisfied!

And (6b) is ruled-in.

31



Deriving all or only(some)

(6b) Jo did all︸︷︷︸
QuD(all)

or only(some)︸ ︷︷ ︸
P : some

A : not all

of the problems.

∃

∀ ∃̃

...

Figure 6: Checking Incremental

PAI after accommodating some on

the “supertrees” of Jo solved all of

the problems. Nodes compatible

with the assertion not all are

underlined.

• In the only possible Tree 6, the

assertion of only some, not

all, rules out the ∀-node.
• Incremental PAI is satisfied!

And (6b) is ruled-in.

31



Deriving all or only(some)

(6b) Jo did all︸︷︷︸
QuD(all)

or only(some)︸ ︷︷ ︸
P : some

A : not all

of the problems.

∃

∀ ∃̃

...

Figure 6: Checking Incremental

PAI after accommodating some on

the “supertrees” of Jo solved all of

the problems. Nodes compatible

with the assertion not all are

underlined.

• In the only possible Tree 6, the

assertion of only some, not

all, rules out the ∀-node.
• Incremental PAI is satisfied!

And (6b) is ruled-in.

31



Deriving #all or pex(some)

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

A : some

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b)

Figure 7: Checking Incremental

PAI after accommodating not all

on the “supertrees” of Jo solved all

of the problems. Nodes

compatible with the assertion

some are underlined.

• In Tree 7a, the assertion of

pex(some), some, does not

rule out any node, i.e. is not

informative!

• Incremental PAI, which must

hold for all implicit QuD trees,

is thus violated, and (3b) is

ruled-out!

• (We don’t care that in Tree 7b,

some rules out the ¬∃-node.)

32



Deriving #all or pex(some)

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

A : some

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b)

Figure 7: Checking Incremental

PAI after accommodating not all

on the “supertrees” of Jo solved all

of the problems. Nodes

compatible with the assertion

some are underlined.

• In Tree 7a, the assertion of

pex(some), some, does not

rule out any node, i.e. is not

informative!

• Incremental PAI, which must

hold for all implicit QuD trees,

is thus violated, and (3b) is

ruled-out!

• (We don’t care that in Tree 7b,

some rules out the ¬∃-node.)

32



Deriving #all or pex(some)

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

A : some

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b)

Figure 7: Checking Incremental

PAI after accommodating not all

on the “supertrees” of Jo solved all

of the problems. Nodes

compatible with the assertion

some are underlined.

• In Tree 7a, the assertion of

pex(some), some, does not

rule out any node, i.e. is not

informative!

• Incremental PAI, which must

hold for all implicit QuD trees,

is thus violated, and (3b) is

ruled-out!

• (We don’t care that in Tree 7b,

some rules out the ¬∃-node.)

32



Deriving #all or pex(some)

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

A : some

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b)

Figure 7: Checking Incremental

PAI after accommodating not all

on the “supertrees” of Jo solved all

of the problems. Nodes

compatible with the assertion

some are underlined.

• In Tree 7a, the assertion of

pex(some), some, does not

rule out any node, i.e. is not

informative!

• Incremental PAI, which must

hold for all implicit QuD trees,

is thus violated, and (3b) is

ruled-out!

• (We don’t care that in Tree 7b,

some rules out the ¬∃-node.)

32



Deriving #all or pex(some)

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

A : some

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b)

Figure 7: Checking Incremental

PAI after accommodating not all

on the “supertrees” of Jo solved all

of the problems. Nodes

compatible with the assertion

some are underlined.

• In Tree 7a, the assertion of

pex(some), some, does not

rule out any node, i.e. is not

informative!

• Incremental PAI, which must

hold for all implicit QuD trees,

is thus violated, and (3b) is

ruled-out!

• (We don’t care that in Tree 7b,

some rules out the ¬∃-node.)

32



Deriving ??all or pex(some) – alternative route

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

A : some

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b)

Figure 8: Checking Incremental

PAI after accommodating not all

on the “supertrees” of Jo solved all

of the problems. Nodes

compatible with the assertion

some are underlined.

• Alternative view: maybe

Incremental PAI has existential

force, and the “bad” Tree 8a

simply corresponds to the most

salient implicit QuD.

• (3b)’s relative infelicity would

then result from a QuD

“garden-path”.1

1Thanks to Jad and Nina for suggesting this.

33



Deriving ??all or pex(some) – alternative route

(3b) ?? Jo did all︸︷︷︸
QuD(all)

or pex(some)︸ ︷︷ ︸
P : not all

A : some

of the problems.

¬∀

...

(a)

¬∀

∃̃

...

¬∃

(b)

Figure 8: Checking Incremental

PAI after accommodating not all

on the “supertrees” of Jo solved all

of the problems. Nodes

compatible with the assertion

some are underlined.

• Alternative view: maybe

Incremental PAI has existential

force, and the “bad” Tree 8a

simply corresponds to the most

salient implicit QuD.

• (3b)’s relative infelicity would

then result from a QuD

“garden-path”.1

1Thanks to Jad and Nina for suggesting this.

33



Getting the flipped cases for free

• So far we have overlooked the flipped case (3a), whereby both pex

and only are licensed.

(3a) Jo did ✓pex/✓only some or all of the problems.

• When processing (3a)’s 1st disjunct (where the

presupposition-bearing operators get inserted), the context C is

empty, so TC is empty and Incremental PAI is trivially verified.24

• Therefore, nothing prevents pex/only to be inserted in the 1st

disjunct of (3a).

24At least under its universal flavor.

34



Getting the flipped cases for free

• So far we have overlooked the flipped case (3a), whereby both pex

and only are licensed.

(3a) Jo did ✓pex/✓only some or all of the problems.

• When processing (3a)’s 1st disjunct (where the

presupposition-bearing operators get inserted), the context C is

empty, so TC is empty and Incremental PAI is trivially verified.24

• Therefore, nothing prevents pex/only to be inserted in the 1st

disjunct of (3a).

24At least under its universal flavor.

34



Getting the flipped cases for free

• So far we have overlooked the flipped case (3a), whereby both pex

and only are licensed.

(3a) Jo did ✓pex/✓only some or all of the problems.

• When processing (3a)’s 1st disjunct (where the

presupposition-bearing operators get inserted), the context C is

empty, so TC is empty and Incremental PAI is trivially verified.24

• Therefore, nothing prevents pex/only to be inserted in the 1st

disjunct of (3a).

24At least under its universal flavor.

34



Extension: Sobel

• This result extends to Sobel Sequences, thanks to the nested

character of implicit QuD trees, and modulo two assumptions:

• Conditionals “plug” the consequent QuD into leaves of the

antecedent QuD verifying the antecedent.25

• The but linking Sobel conditionals behaves like an or at the QuD

level.

CS

∀

Pass Fail

¬∀

CS

∀

Pass Fail

∃̃ ¬∃

CS

∃

∀

Pass Fail

∃̃

¬∃

Figure 9: QuDs evoked by If all then pass: similar to those evoked by all

except there is one extra {Pass, Fail} subpartition.

25An idea already entertained by Enguehard (2021) for independent reasons.
35



Conclusion: REUSE, REDUCE, RECYCLE

• We accounted for the contrast between (presuppositional) exh

(asymmetric rescuer in SHDs), and only (symmetric rescuer), based

on standard entries for these operators, and the incremental

adaptation of PAI, an independently motivated constraint on

presupposition accommodation.

• Under that view, the two disjuncts of a SHD behave pretty much

like an overt QuD (∼1st disjunct), and its answer (2nd disjunct),

with the constraint that the answer should not presuppositionally

settle the QuD.

• Lastly, we explored a way to capture the subtleness of the

asymmetry introduced by pex, anaylzed as a “QuD garden-path”.

• Further extensions: scales involving “distant-entailing”/partially

ordered alternatives.

36



Conclusion: REUSE, REDUCE, RECYCLE

• We accounted for the contrast between (presuppositional) exh

(asymmetric rescuer in SHDs), and only (symmetric rescuer), based

on standard entries for these operators, and the incremental

adaptation of PAI, an independently motivated constraint on

presupposition accommodation.

• Under that view, the two disjuncts of a SHD behave pretty much

like an overt QuD (∼1st disjunct), and its answer (2nd disjunct),

with the constraint that the answer should not presuppositionally

settle the QuD.

• Lastly, we explored a way to capture the subtleness of the

asymmetry introduced by pex, anaylzed as a “QuD garden-path”.

• Further extensions: scales involving “distant-entailing”/partially

ordered alternatives.

36



Conclusion: REUSE, REDUCE, RECYCLE

• We accounted for the contrast between (presuppositional) exh

(asymmetric rescuer in SHDs), and only (symmetric rescuer), based

on standard entries for these operators, and the incremental

adaptation of PAI, an independently motivated constraint on

presupposition accommodation.

• Under that view, the two disjuncts of a SHD behave pretty much

like an overt QuD (∼1st disjunct), and its answer (2nd disjunct),

with the constraint that the answer should not presuppositionally

settle the QuD.

• Lastly, we explored a way to capture the subtleness of the

asymmetry introduced by pex, anaylzed as a “QuD garden-path”.

• Further extensions: scales involving “distant-entailing”/partially

ordered alternatives.

36



Conclusion: REUSE, REDUCE, RECYCLE

• We accounted for the contrast between (presuppositional) exh

(asymmetric rescuer in SHDs), and only (symmetric rescuer), based

on standard entries for these operators, and the incremental

adaptation of PAI, an independently motivated constraint on

presupposition accommodation.

• Under that view, the two disjuncts of a SHD behave pretty much

like an overt QuD (∼1st disjunct), and its answer (2nd disjunct),

with the constraint that the answer should not presuppositionally

settle the QuD.

• Lastly, we explored a way to capture the subtleness of the

asymmetry introduced by pex, anaylzed as a “QuD garden-path”.

• Further extensions: scales involving “distant-entailing”/partially

ordered alternatives.

36



Thank you!

37



Selected references i

Sobel, J. H. (1970).Utilitarianisms: Simple and general. Inquiry: An Interdisciplinary

Journal of Philosophy, 13(1-4), 394–449.
https://doi.org/10.1080/00201747008601599

Lewis, D. K. (1973). Counterfactuals. Blackwell.

Hurford, J. R. (1974).Exclusive or Inclusive Disjunction. Foundations of Language,

11(3), 409–411.

Gazdar, G. (1979).Pragmatics, Implicature, Presuposition and Logical Form. Critica,

12(35), 113–122.

Roberts, C. (1996).Information Structure in Discourse: Towards an Integrated
Formal Theory of Pragmatics. Semantics and Pragmatics, 5, 1–69.

Simons, M. (2001).Disjunction and Alternativeness. Linguistics and Philosophy,

24(5), 597–619. https://doi.org/10.1023/a:1017597811833

von Fintel, K. (2001, April). Counterfactuals in a dynamic context. In Ken hale

(pp. 123–152). The MIT Press.
https://doi.org/10.7551/mitpress/4056.003.0006

Singh, R. (2008a). Modularity and locality in interpretation [Doctoral dissertation,

MIT].

38

https://doi.org/10.1080/00201747008601599
https://doi.org/10.1023/a:1017597811833
https://doi.org/10.7551/mitpress/4056.003.0006


Selected references ii

Singh, R. (2008b).On the interpretation of disjunction: Asymmetric, incremental,

and eager for inconsistency. Linguistics and Philosophy, 31(2), 245–260.
https://doi.org/10.1007/s10988-008-9038-x

Chierchia, G., Fox, D., & Spector, B. (2009). Hurford’s Constraint and the Theory of

Scalar Implicatures: Evidence for embedded implicatures. In P. Égré &
G. Magri (Eds.), Presuppositions and Implicatures: Proceedings of the
MIT-Paris Workshop.

Roberts, C. (2012).Information structure in discourse: Towards an integrated formal
theory of pragmatics. Semantics and Pragmatics, 5.
https://doi.org/10.3765/sp.5.6

Heim, I. (2015). Lecture notes.

Fox, D., & Spector, B. (2018).Economy and embedded exhaustification. Natural

Language Semantics, 26(1), 1–50.
https://doi.org/10.1007/s11050-017-9139-6

Ippolito, M. (2019).Varieties of sobel sequences. Linguistics and Philosophy, 43(6),

633–671. https://doi.org/10.1007/s10988-019-09281-8

Westera, M. (2020).Hurford disjunctions: An in-depth comparison of the
grammatical and the pragmatic approach. Under review.

39

https://doi.org/10.1007/s10988-008-9038-x
https://doi.org/10.3765/sp.5.6
https://doi.org/10.1007/s11050-017-9139-6
https://doi.org/10.1007/s10988-019-09281-8


Selected references iii

Bassi, I., Pinal, G. D., & Sauerland, U. (2021).Presuppositional exhaustification.
Semantics and Pragmatics, 14, 1–42.

Enguehard, É. (2021).Explaining presupposition projection in (coordinations of)

polar questions. Natural Language Semantics, 29(4), 527–578.
https://doi.org/10.1007/s11050-021-09182-2

Tomioka, S. (2021).Scalar Implicature, Hurford’s Constraint, Contrastiveness and
How They All Come Together. Frontiers in Communication, 5.
https://doi.org/10.3389/fcomm.2020.461553

Aravind, A., Fox, D., & Hackl, M. (2022).Principles of presupposition in

development. Linguistics and Philosophy, 46(2), 291–332.
https://doi.org/10.1007/s10988-022-09364-z

Zhang, Y. (2022). New perspectives on inquisitive semantics [Doctoral dissertation,

University of Maryland].

Hénot-Mortier, A. (2023).Alternatives are blind to some but not all kinds of context:
The view from hurford disjunctions. Proceedings of Sinn und Bedeutung,
27, 291–308. https://doi.org/10.18148/sub/2023.v27.1071

Doron, O., & Wehbe, J. (2024).On the pragmatic status of locally accommodated
presuppositions.

40

https://doi.org/10.1007/s11050-021-09182-2
https://doi.org/10.3389/fcomm.2020.461553
https://doi.org/10.1007/s10988-022-09364-z
https://doi.org/10.18148/sub/2023.v27.1071


Selected references iv

Krifka, M. (2024).Hurford’s constraint and disjunctions over speech acts.
Proceedings of the 2024 Amsterdam Colloquium.

Hénot-Mortier, A. (to appear).”One tool to rule them all”? An integrated model of

the QuD for Hurford sentences [Draft
(https://adelemortier.github.io/files/SuB 2024 TMT paper.pdf)].
Proceedings of the 29th Sinn und Bedeutung.

41

https://adelemortier.github.io/files/SuB_2024_TMT_paper.pdf


Appendix



Extension: Distant Entailing Alternatives

• Unlike Singh’s LMP! story, our account (modulo one extra

assumption about QuD tree “monotonicity”) can explain why pex

becomes a symmetric rescuer when most is made salient, beside

some and all.

42


	Previous accounts
	Exhaustification and the QuD
	Incremental implicit QuDs
	Felicitously addressing (implicit) QuDs
	Appendix

