Intro 00000	Case study #1 0000000	Case study #2	Conclusion 0000	References	Appendices 00000000000

Distinguishing levels of morphological derivations in word-embedding models

Ido Benbaji ¹ Omri Doron ¹ Adèle Hénot-Mortier ¹

¹Massachusetts Institute of Technology

August 16, 2022

Intro ●0000 ase study #1 000000 Case study #2

Conclusion

References

Appendices 00000000000

Introduction: the 2-level model of morphology, and word embeddings

A few basic principles of word formation

- Morphological operations can be of two types...
 - Lower Level: idiosyncratic, non-compositional, unpredictable.
 Upper Level: deterministic, compositional, predicatble.
- Given a base element A and a word derived from it B, the two-level hypothesis predicts that both the semantic and the phonological relation between A and B depends on the level at which the derivation takes place.
- While the meaning and form of words that diverge at UL are predicted to be regularly connected, the connection between words that diverge at LL is predicted to be looser.

Intro Case study #1 Case study #2 Conclusion References Appendices A few basic principles of word formation

- Morphological operations can be of two types...
 - Lower Level: idiosyncratic, non-compositional, unpredictable.
 Upper Level: deterministic, compositional, predicatble.
- Given a base element A and a word derived from it B, the two-level hypothesis predicts that both the semantic and the phonological relation between A and B depends on the level at which the derivation takes place.
- While the meaning and form of words that diverge at UL are predicted to be regularly connected, the connection between words that diverge at LL is predicted to be looser.

Intro Case study #1 Case study #2 Conclusion References Appendices A few basic principles of word formation

- Morphological operations can be of two types...
 - Lower Level: idiosyncratic, non-compositional, unpredictable.
 - Upper Level: deterministic, compositional, predicatble.
- Given a base element A and a word derived from it B, the two-level hypothesis predicts that both the semantic and the phonological relation between A and B depends on the level at which the derivation takes place.
- While the meaning and form of words that diverge at UL are predicted to be regularly connected, the connection between words that diverge at LL is predicted to be looser.

A few basic principles of word formation

- Morphological operations can be of two types...
 - Lower Level: idiosyncratic, non-compositional, unpredictable.
 - Upper Level: deterministic, compositional, predicatble.
- Given a base element A and a word derived from it B, the two-level hypothesis predicts that both the semantic and the phonological relation between A and B depends on the level at which the derivation takes place.
- While the meaning and form of words that diverge at UL are predicted to be regularly connected, the connection between words that diverge at LL is predicted to be looser.

Intro Case study #1 Case study #2 Conclusion References Appendices A few basic principles of word formation

- Morphological operations can be of two types...
 - Lower Level: idiosyncratic, non-compositional, unpredictable.
 - Upper Level: deterministic, compositional, predicatble.
- Given a base element A and a word derived from it B, the two-level hypothesis predicts that both the semantic and the phonological relation between A and B depends on the level at which the derivation takes place.
- While the meaning and form of words that diverge at UL are predicted to be regularly connected, the connection between words that diverge at LL is predicted to be looser.

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00●00	0000000	00000	0000		00000000000

Key semantic predictions of the two-level model

We focus on the semantic effects of the level-distinction, which makes two key predictions:

- A. Words derived from the same element via LL operations may arbitrarily differ semantically.
- B. Words derived from the same element *via* UL operations should be closely related semantically.

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00●00	0000000	00000	0000		00000000000

Key semantic predictions of the two-level model

We focus on the semantic effects of the level-distinction, which makes two key predictions:

- A. Words derived from the same element via LL operations may arbitrarily differ semantically.
- B. Words derived from the same element *via* UL operations should be closely related semantically.

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00●00	0000000	00000	0000		00000000000

Key semantic predictions of the two-level model

We focus on the semantic effects of the level-distinction, which makes two key predictions:

- A. Words derived from the same element via LL operations may arbitrarily differ semantically.
- B. Words derived from the same element *via* UL operations should be closely related semantically.

Intro Case study #1 Case study #2 Conclusion References Appendic OOOOO 000000 00000 0000 00000 <	ices 0000000
--	-----------------

What are word embedding models?

- Word embeddings are high-dimensional vector representations of words, based their co-occurrence with other words in a corpus. [7].
- They can be "static" (1 word = 1 fixed vector) or "contextualized" (1 word = 1 context-dependent vector).
- Static embeddings include Word2Vec [12], GloVe [13], and fastText [2]; contextualized ones include BERT [3].

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
000●0	0000000	00000	0000		00000000000

What are word embedding models?

- Word embeddings are high-dimensional vector representations of words, based their co-occurrence with other words in a corpus. [7].
- They can be "static" (1 word = 1 fixed vector) or "contextualized" (1 word = 1 context-dependent vector).

• Static embeddings include Word2Vec [12], GloVe [13], and fastText [2]; contextualized ones include BERT [3].

Intro 000●0	Case study $\#1$	Case study #2 00000	Conclusion 0000	References	Appendices 00000000000

What are word embedding models?

- Word embeddings are high-dimensional vector representations of words, based their co-occurrence with other words in a corpus. [7].
- They can be "static" (1 word = 1 fixed vector) or "contextualized" (1 word = 1 context-dependent vector).
- Static embeddings include Word2Vec [12], GloVe [13], and fastText [2]; contextualized ones include BERT [3].

- similarity: cosine similarity (~angle between 2 vectors).
- Past empirical evidence in favor of embeddings'

14 / 82

- duke

Intro Case study #1 Case study #2 Conclusion References

Relevance of word embeddings to our task

- Embeddings come with a robust measure of semantic similarity: cosine similarity (~angle between 2 vectors).
- Past empirical evidence in favor of embeddings' encoding of semantic features and relationships [13].

Appendices

000 000000 "		Case study #1
	000	000000Ő Ü

Case study #2

Conclusior

Reference

Appendices

Case study #1: Hebrew denominal verbs

<ロト < 回 ト < 直 ト < 直 ト < 直 ト 三 の Q (C) 16/82

- In Modern Hebrew, functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{}$) consonants.

- For instance, template taCCiC (=*n*-head) can combine with root \sqrt{xJv} to form the word (noun) taxJiv, 'calculation'.
- In the above template, the t is called a *templatic consonant*.
- A root, applied to different templates, yields words with very different meanings: $\sqrt{xJv}+CaCuC=xaJuv}$, 'important', no obvious link with 'calculation'! In line with prediction A.

- In Modern Hebrew, functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{}$) consonants.

- For instance, template taCCiC (=*n*-head) can combine with root \sqrt{xJv} to form the word (noun) taxJiv, 'calculation'.
- In the above template, the t is called a *templatic consonant*.
- A root, applied to different templates, yields words with very different meanings: \sqrt{xJv} +CaCuC=xaJuv, 'important', no obvious link with 'calculation'! In line with prediction A.

- In Modern Hebrew, functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{}$) consonants.

- For instance, template taCCiC (=*n*-head) can combine with root \sqrt{xJv} to form the word (noun) taxJiv, 'calculation'.
- In the above template, the t is called a *templatic consonant*.
- A root, applied to different templates, yields words with very different meanings: \sqrt{xJv} +CaCuC=xaJuv, 'important', no obvious link with 'calculation'! In line with prediction A.

- In Modern Hebrew, functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{}$) consonants.

- For instance, template taCCiC (=*n*-head) can combine with root \sqrt{xJv} to form the word (noun) taxJiv, 'calculation'.
- In the above template, the t is called a *templatic consonant*.
- A root, applied to different templates, yields words with very different meanings: $\sqrt{xJv}+CaCuC=xaJuv}$, 'important', no obvious link with 'calculation'! In line with prediction A.

The 2-le	evel model	at work in	Modern H	ebrew	
Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	00●0000	00000	0000		00000000000

Hebrew denominal verbs

- **Denominal verbs are derived from a noun**. In other words, they result from the merger of a *n*-head (LL), followed by that of a *v*-head (UL).
- It is not easy to tease apart denominals from "basic" verbs derived directly from a root in English corpora (but see [8]).
- Hebrew comes with a clear diagnostic: templatic consonants! If a verb contains a consonant that (1) belongs to a known nominal template, and (2) does not belong to the original root; then the verb is probably denominal [1].

$$\frac{\max \int ev}{(\text{denominal})} \rightarrow \frac{\max \int ev}{(\text{computer})} - \text{CiCCeC}(v) \rightarrow \text{computerized}'$$

$$\sqrt{x \int v} \leq \frac{\max \int ev}{\text{CiCCeC}(v)} \rightarrow \frac{x i \int ev}{(\text{calculated})} \rightarrow \frac{1}{(21/82)} \rightarrow \frac{1}{(21/82)}$$

The 2-le	evel model a	at work in	Modern H	ebrew	
Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		00000000000

Hebrew denominal verbs

- **Denominal verbs are derived from a noun**. In other words, they result from the merger of a *n*-head (LL), followed by that of a *v*-head (UL).
- It is not easy to tease apart denominals from "basic" verbs derived directly from a root in English corpora (but see [8]).
- Hebrew comes with a clear diagnostic: templatic consonants! If a verb contains a consonant that (1) belongs to a known nominal template, and (2) does not belong to the original root; then the verb is probably denominal [1].

$$\frac{\max \int ev}{\operatorname{computer}^{\prime} - \operatorname{CiCCeC}(v) \rightarrow \operatorname{computerized}^{\prime}}_{\operatorname{CiCCeC}(v) \rightarrow \operatorname{computerized}^{\prime}}_{\operatorname{CiCCeC}(v) \rightarrow \operatorname{ciflev}^{\prime}}_{\operatorname{Calculated}^{\prime}}$$

Hebrew denominal verbs

- **Denominal verbs are derived from a noun**. In other words, they result from the merger of a *n*-head (LL), followed by that of a *v*-head (UL).
- It is not easy to tease apart denominals from "basic" verbs derived directly from a root in English corpora (but see [8]).
- Hebrew comes with a clear diagnostic: templatic consonants! If a verb contains a consonant that (1) belongs to a known nominal template, and (2) does not belong to the original root; then the verb is probably denominal [1].

$$\frac{\max \int ev}{\sqrt{x \int v}} \xrightarrow{} \max \int ev}_{\text{computer}} - \text{CiCCeC}(v) \rightarrow \text{computerized}' \text{(denominal)}$$

$$\sqrt{x \int v} \xrightarrow{} \min (v) \rightarrow (v) \rightarrow$$

···· for-

Denominal vs root-derived verbs [1]

- Back to the predictions of the 2-level model...
 - A. If a noun N and a verb V derive from the same root (via a LL operation), we expect them to differ semantically in a somewhat arbitrary way.
 - B. If a denominal verb D derives from a base noun N (*via* a UL operation), we expect them to be **close semantically**.
- Thus, given a root $\sqrt{}$, a noun N, a verb V, a denominal D, s.t. $\sqrt{\xrightarrow{LL}} N$, $\sqrt{\xrightarrow{LL}} V$, and $N \xrightarrow{UL} D$, we expect:

$\mathcal{S}(N,D) > \mathcal{S}(N,V)$

For some well-chosen semantic measure \mathcal{S} between pairs of words. Building on the previous example:

 $\mathcal{S}(\max fev_N, \min fev_D) > \mathcal{S}(\max fev_N, \min fev_V)$

 $\substack{\mathsf{Case study} \ \#1\\ 000 \bullet 000}$

Case study #2 00000 Conclusion

References

< ロ > < 同 > < 回 > < 回 >

Appendices 0000000000

Denominal vs root-derived verbs [1]

- Back to the predictions of the 2-level model...
 - A. If a noun N and a verb V derive from the same root (via a LL operation), we expect them to differ semantically in a somewhat arbitrary way.
 - B. If a denominal verb *D* derives from a base noun *N* (*via* a UL operation), we expect them to be **close semantically**.
- Thus, given a root $\sqrt{}$, a noun N, a verb V, a denominal D, s.t. $\sqrt{\xrightarrow{LL}} N$, $\sqrt{\xrightarrow{LL}} V$, and $N \xrightarrow{UL} D$, we expect:

 $\mathcal{S}(N,D) > \mathcal{S}(N,V)$

For some well-chosen semantic measure \mathcal{S} between pairs of words. Building on the previous example:

 $\mathcal{S}(\max fev_N, \min fev_D) > \mathcal{S}(\max fev_N, \min fev_V)$

 $\substack{\mathsf{Case study} \ \#1\\ 000 \bullet 000}$

Case study #2 00000 Conclusion

References

< ロ > < 同 > < 回 > < 回 >

Appendices

Denominal vs root-derived verbs [1]

- Back to the predictions of the 2-level model...
 - A. If a noun N and a verb V derive from the same root (via a LL operation), we expect them to differ semantically in a somewhat arbitrary way.
 - B. If a denominal verb D derives from a base noun N (*via* a UL operation), we expect them to be **close semantically**.
- Thus, given a root $\sqrt{}$, a noun N, a verb V, a denominal D, s.t. $\sqrt{\xrightarrow{LL}} N$, $\sqrt{\xrightarrow{LL}} V$, and $N \xrightarrow{UL} D$, we expect:

 $\mathcal{S}(N,D) > \mathcal{S}(N,V)$

For some well-chosen semantic measure ${\mathcal S}$ between pairs of words. Building on the previous example:

 $\mathcal{S}(\max fev_N, \min fev_D) > \mathcal{S}(\max fev_N, \min fev_V)$

Case study #1 000€000 Case study #2 00000 Conclusion

References

< ロ > < 同 > < 回 > < 回 >

Appendices 00000000000

Denominal vs root-derived verbs [1]

- Back to the predictions of the 2-level model...
 - A. If a noun N and a verb V derive from the same root (via a LL operation), we expect them to differ semantically in a somewhat arbitrary way.
 - B. If a denominal verb D derives from a base noun N (*via* a UL operation), we expect them to be **close semantically**.
- Thus, given a root $\sqrt{}$, a noun N, a verb V, a denominal D, s.t. $\sqrt{\xrightarrow{LL}} N$, $\sqrt{\xrightarrow{LL}} V$, and $N \xrightarrow{UL} D$, we expect:

 $\mathcal{S}(N,D) > \mathcal{S}(N,V)$

For some well-chosen semantic measure ${\cal S}$ between pairs of words. Building on the previous example:

 $\mathcal{S}(\max fev_N, \min fev_D) > \mathcal{S}(\max fev_N, \operatorname{xifev}_V)$

Case study #1 000€000 Case study #2 00000 Conclusion

References

< ロ > < 同 > < 回 > < 回 >

Appendices 00000000000

Denominal vs root-derived verbs [1]

- Back to the predictions of the 2-level model...
 - A. If a noun N and a verb V derive from the same root (via a LL operation), we expect them to differ semantically in a somewhat arbitrary way.
 - B. If a denominal verb D derives from a base noun N (*via* a UL operation), we expect them to be **close semantically**.
- Thus, given a root $\sqrt{}$, a noun N, a verb V, a denominal D, s.t. $\sqrt{\xrightarrow{LL}} N$, $\sqrt{\xrightarrow{LL}} V$, and $N \xrightarrow{UL} D$, we expect:

$$\mathcal{S}(N,D) > \mathcal{S}(N,V)$$

For some well-chosen semantic measure ${\cal S}$ between pairs of words. Building on the previous example:

 $\mathcal{S}(\max fev_N, \min fev_D) > \mathcal{S}(\max fev_N, \operatorname{xifev}_V)$

Case study #2 00000 Conclusion

References

How does the 2-level model translate into a word embedding?

- Let us define $Area(\sqrt{})$ as the subspace (convex envelope?) of $\{\overrightarrow{X}|\sqrt{}\rightarrow^* X\}$. The predictions of the 2-level model become:
 - A. Given a root $\sqrt{}$, and A, B, s.t. $\sqrt{\xrightarrow{LL}} A$, and $\sqrt{\xrightarrow{LL}} B$, we expect \overrightarrow{A} and \overrightarrow{B} to be randomly distributed across $Area(\sqrt{})$.
 - B. Given $\sqrt{}$, A and B, s.t. $\sqrt{\xrightarrow{LL}} A \xrightarrow{UL} B$, we expect \overrightarrow{A} and \overrightarrow{B} to be very close to each other within $Area(\sqrt{})$.
- Let $\sqrt{}$, N, D, $(V_i)_{i \in [1,K]}$, be s.t. $\sqrt{\xrightarrow{LL}} N$, $\forall i \in [1, K] \sqrt{\xrightarrow{LL}} V_i$, and $N \xrightarrow{UL} D$. We predict:

 $CosSim(\overrightarrow{N},\overrightarrow{D}) > \max_i CosSim(\overrightarrow{N},\overrightarrow{V}_i)$ (Stronger Hypothesis¹) $CosSim(\overrightarrow{N},\overrightarrow{D}) > \frac{1}{K}\sum_{i=1}^{K} CosSim(\overrightarrow{N},\overrightarrow{V}_i)$ (Weaker Hypothesis)

¹ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_i may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of LL operations. This motivates the use of the weaker hypothesis.

Conclusion

References

How does the 2-level model translate into a word embedding?

Intro

Case study #1

0000000

- Let us define $Area(\sqrt{})$ as the subspace (convex envelope?) of $\{\overrightarrow{X}|\sqrt{}\rightarrow^*X\}$. The predictions of the 2-level model become:
 - A. Given a root $\sqrt{}$, and A, B, s.t. $\sqrt{\stackrel{LL}{\rightarrow}} A$, and $\sqrt{\stackrel{LL}{\rightarrow}} B$, we expect \overrightarrow{A} and \overrightarrow{B} to be randomly distributed across $Area(\sqrt{})$.
 - B. Given $\sqrt{}$, A and B, s.t. $\sqrt{\xrightarrow{LL}} A \xrightarrow{OL} B$, we expect \hat{A} and \hat{B} to be very close to each other within $Area(\sqrt{})$.
- Let $\sqrt{}$, N, D, $(V_i)_{i \in [1,K]}$, be s.t. $\sqrt{\xrightarrow{LL}} N$, $\forall i \in [1, K] \sqrt{\xrightarrow{LL}} V_i$, and $N \xrightarrow{UL} D$. We predict:

 $CosSim(\overrightarrow{N},\overrightarrow{D}) > \max_i CosSim(\overrightarrow{N},\overrightarrow{V}_i)$ (Stronger Hypothesis¹) $CosSim(\overrightarrow{N},\overrightarrow{D}) > \frac{1}{K}\sum_{i=1}^{K} CosSim(\overrightarrow{N},\overrightarrow{V}_i)$ (Weaker Hypothesis)

¹ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_i may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of LL operations. This motivates the use of the weaker hypothesis.

Case study #2 00000

Intro

Case study #1

0000000

Conclusion

References

How does the 2-level model translate into a word embedding?

- Let us define $Area(\sqrt{})$ as the subspace (convex envelope?) of $\{\overrightarrow{X}|\sqrt{}\rightarrow^*X\}$. The predictions of the 2-level model become:
 - A. Given a root $\sqrt{}$, and A, B, s.t. $\sqrt{\xrightarrow{ll}} A$, and $\sqrt{\xrightarrow{ll}} B$, we expect \overrightarrow{A} and \overrightarrow{B} to be randomly distributed across $Area(\sqrt{})$.
 - B. Given $\sqrt{}$, A and B, s.t. $\sqrt{\xrightarrow{LL}} A \xrightarrow{UL} B$, we expect \overrightarrow{A} and \overrightarrow{B} to be very close to each other within $Area(\sqrt{})$.

• Let $\sqrt{}$, N, D, $(V_i)_{i \in [1,K]}$, be s.t. $\sqrt{\xrightarrow{LL}} N$, $\forall i \in [1, K] \sqrt{\xrightarrow{LL}} V_i$, and $N \xrightarrow{UL} D$. We predict:

 $CosSim(\overrightarrow{N},\overrightarrow{D}) > \max_i CosSim(\overrightarrow{N},\overrightarrow{V}_i)$ (Stronger Hypothesis¹) $CosSim(\overrightarrow{N},\overrightarrow{D}) > \frac{1}{K}\sum_{i=1}^{K} CosSim(\overrightarrow{N},\overrightarrow{V}_i)$ (Weaker Hypothesis)

¹ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_i may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of LL operations. This motivates the use of the weaker hypothesis.

How does the 2-level model translate into a word embedding?

Case study #2

- Let us define $Area(\sqrt{})$ as the subspace (convex envelope?) of $\{\overrightarrow{X}|\sqrt{}\rightarrow^*X\}$. The predictions of the 2-level model become:
 - A. Given a root $\sqrt{}$, and A, B, s.t. $\sqrt{\overset{ll}{\rightarrow}} A$, and $\sqrt{\overset{ll}{\rightarrow}} B$, we expect \overrightarrow{A} and \overrightarrow{B} to be randomly distributed across $Area(\sqrt{})$.

Conclusion

- B. Given $\sqrt{}$, A and B, s.t. $\sqrt{\xrightarrow{LL}} A \xrightarrow{UL} B$, we expect \overrightarrow{A} and \overrightarrow{B} to be very close to each other within $Area(\sqrt{})$.
- Let $\sqrt{}$, N, D, $(V_i)_{i \in [1,K]}$, be s.t. $\sqrt{\stackrel{LL}{\rightarrow}} N$, $\forall i \in [1, K] \sqrt{\stackrel{LL}{\rightarrow}} V_i$, and $N \stackrel{UL}{\rightarrow} D$. We predict:

 $\begin{aligned} & \textit{CosSim}(\overrightarrow{N},\overrightarrow{D}) > \max_{i}\textit{CosSim}(\overrightarrow{N},\overrightarrow{V}_{i}) \quad (\texttt{Stronger Hypothesis}^{1}) \\ & \textit{CosSim}(\overrightarrow{N},\overrightarrow{D}) > \frac{1}{\mathcal{K}}\sum_{i=1}^{\mathcal{K}}\textit{CosSim}(\overrightarrow{N},\overrightarrow{V}_{i}) \quad (\texttt{Weaker Hypothesis}) \end{aligned}$

¹ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_i may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of LL operations. This motivates the use of the weaker hypothesis.

Case study #1

Figure 2: 2D-reduction of a few datapoints (PCA, cosine kernel, fastText) =

ro 000	Case study #1 000000●	Case study #2	Conclusion 0000	References	Appendices 00000000000
Results for the Hebrew Case study					

• We tested 4 architectures: Word2vec [12], GloVe [13], fastText [4], BERT [14]. The last 2 were pretrained.

• Weaker hypothesis $(CosSim(\vec{N}, \vec{D}) / \frac{1}{K} \sum_{i=1}^{K} CosSim(\vec{N}, \vec{V}_i))$:

- All Wilcoxon tests appear significant.
- Large effect sizes, except for BERT.
- Stronger hypothesis $(CosSim(\vec{N}, \vec{D})/max_iCosSim(\vec{N}, \vec{V}_i))$:
 - All Wilcoxon tests but two (GloVe₅₀, BERT) are significant.
 - Large effect sizes on the significant results, except for GloVe₁₀₀.

	Word2Vec ₁₀₀	GloVe ₅₀	GloVe ₁₀₀	fastText ₃₀₀	BERT ₇₆₈
# datapoints	31	31	31	53	66
Weak hyp.	1e-6	2e-4	7e-5	1e-10	5e-4
(mean)	.86 (L)	.52 (L)	.66 (L)	.79 (L)	.30 (S)
Strong hyp.	4e-5	2e-1	3e-2	1e-8	4e-1
(max)	.66 (L)	.06 (N)	.20 (S)	.62 (L)	.02 (N)

Table 1: *p*-values (1-tailed Wilcoxon) and effect sizes (Cliff's Δ ; N=Negligible; S=Small; M=Medium; L=Large) for the weak and strong hypotheses and 5 embedding models

34 / 82

Results for the Hebrew Case study

- We tested 4 architectures: Word2vec [12], GloVe [13], fastText [4], BERT [14]. The last 2 were pretrained.
- Weaker hypothesis $(CosSim(\vec{N}, \vec{D}) / \frac{1}{K} \sum_{i=1}^{K} CosSim(\vec{N}, \vec{V}_i))$:
 - All Wilcoxon tests appear significant.
 - Large effect sizes, except for BERT.

• Stronger hypothesis $(CosSim(\vec{N}, \vec{D})/max_iCosSim(\vec{N}, \vec{V}_i))$:

• All Wilcoxon tests but two (GloVe₅₀, BERT) are significant.

• Large effect sizes on the significant results, except for GloVe₁₀₀.

	Word2Vec ₁₀₀	GloVe ₅₀	GloVe ₁₀₀	fastText ₃₀₀	BERT ₇₆₈
# datapoints	31	31	31	53	66
Weak hyp.	1e-6	2e-4	7e-5	1e-10	5e-4
(mean)	.86 (L)	.52 (L)	.66 (L)	.79 (L)	.30 (S)
Strong hyp.	4e-5	2e-1	3e-2	1e-8	4e-1
(max)	.66 (L)	.06 (N)	.20 (S)	.62 (L)	.02 (N)

Table 1: *p*-values (1-tailed Wilcoxon) and effect sizes (Cliff's Δ ; N=Negligible; S=Small; M=Medium; L=Large) for the weak and strong hypotheses and 5 embedding models

35 / 82

- We tested 4 architectures: Word2vec [12], GloVe [13], fastText [4], BERT [14]. The last 2 were pretrained.
- Weaker hypothesis $(CosSim(\vec{N}, \vec{D}) / \frac{1}{K} \sum_{i=1}^{K} CosSim(\vec{N}, \vec{V}_i))$:
 - All Wilcoxon tests appear significant.
 - Large effect sizes, except for BERT.
- Stronger hypothesis $(CosSim(\overrightarrow{N}, \overrightarrow{D})/max_iCosSim(\overrightarrow{N}, \overrightarrow{V}_i))$:
 - All Wilcoxon tests but two (GloVe₅₀, BERT) are significant.
 - Large effect sizes on the significant results, except for ${\sf GloVe}_{100}.$

	Word2Vec ₁₀₀	GloVe ₅₀	GloVe ₁₀₀	fastText ₃₀₀	BERT ₇₆₈
# datapoints	31	31	31	53	66
Weak hyp.	1e-6	2e-4	7e-5	1e-10	5e-4
(mean)	.86 (L)	.52 (L)	.66 (L)	.79 (L)	.30 (S)
Strong hyp.	4e-5	2e-1	3e-2	1e-8	4e-1
(max)	.66 (L)	.06 (N)	.20 (S)	.62 (L)	.02 (N)

Table 1: *p*-values (1-tailed Wilcoxon) and effect sizes (Cliff's Δ ; N=Negligible; S=Small; M=Medium; L=Large) for the weak and strong hypotheses and 5 embedding models

36 / 82
Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	●0000	0000		00000000000

Case study #2: English suffixation

English suffixation and stress

- English suffixes that can apparently attach to the same kind of base have different effects on stress assignment [9].
- On "adjective-like" bases for instance, -*ity* shifts stress while -*ness* doesn't (glóbal → globálity, glóbalness).
 - Means that -ity has access to the phonological features of its base, while -ness doesn't (phonological opacity)...
 - Suggests that -ity attaches to an uncategorized root to form a noun and participates in a LL operation, while -ness attaches to a word (adjective) and participates in an UL operation.

- Assuming phonological opacity correlates with "semantic" opacity, *-ity-affixation* (LL) should yield more variable meanings on average than *-ness-affixation* (UL).
- The prediction can extend to other LL/UL pairs of suffixes, like *-al/-less* (see Appendix II for results).

English suffixation and stress

- English suffixes that can apparently attach to the same kind of base have different effects on stress assignment [9].
- On "adjective-like" bases for instance, -*ity* shifts stress while -*ness* doesn't (glóbal → globálity, glóbalness).
 - Means that *-ity* has access to the phonological features of its base, while *-ness* doesn't (phonological opacity)...
 - Suggests that *-ity* attaches to an uncategorized *root* to form a noun and participates in a LL operation, while *-ness* attaches to a *word* (adjective) and participates in an UL operation.

- Assuming phonological opacity correlates with "semantic" opacity, *-ity-affixation* (LL) should yield more variable meanings on average than *-ness-affixation* (UL).
- The prediction can extend to other LL/UL pairs of suffixes, like *-al/-less* (see Appendix II for results).

English suffixation and stress

- English suffixes that can apparently attach to the same kind of base have different effects on stress assignment [9].
- On "adjective-like" bases for instance, -*ity* shifts stress while -*ness* doesn't (glóbal → globálity, glóbalness).
 - Means that *-ity* has access to the phonological features of its base, while *-ness* doesn't (phonological opacity)...
 - Suggests that *-ity* attaches to an uncategorized *root* to form a noun and participates in a LL operation, while *-ness* attaches to a *word* (adjective) and participates in an UL operation.

- Assuming phonological opacity correlates with "semantic" opacity, *-ity-affixation* (LL) should yield more variable meanings on average than *-ness-affixation* (UL).
- The prediction can extend to other LL/UL pairs of suffixes, like *-al/-less* (see Appendix II for results).

English suffixation and stress

- English suffixes that can apparently attach to the same kind of base have different effects on stress assignment [9].
- On "adjective-like" bases for instance, -*ity* shifts stress while -*ness* doesn't (glóbal → globálity, glóbalness).
 - Means that *-ity* has access to the phonological features of its base, while *-ness* doesn't (phonological opacity)...
 - Suggests that *-ity* attaches to an uncategorized *root* to form a noun and participates in a LL operation, while *-ness* attaches to a *word* (adjective) and participates in an UL operation.

- Assuming phonological opacity correlates with "semantic" opacity, -*ity*-affixation (LL) should yield more variable meanings on average than -*ness*-affixation (UL).
- The prediction can extend to other LL/UL pairs of suffixes, like *-al/-less* (see Appendix II for results).

English suffixation and stress

- English suffixes that can apparently attach to the same kind of base have different effects on stress assignment [9].
- On "adjective-like" bases for instance, -*ity* shifts stress while -*ness* doesn't (glóbal → globálity, glóbalness).
 - Means that *-ity* has access to the phonological features of its base, while *-ness* doesn't (phonological opacity)...
 - Suggests that *-ity* attaches to an uncategorized *root* to form a noun and participates in a LL operation, while *-ness* attaches to a *word* (adjective) and participates in an UL operation.

- Assuming phonological opacity correlates with "semantic" opacity, -*ity*-affixation (LL) should yield more variable meanings on average than -*ness*-affixation (UL).
- The prediction can extend to other LL/UL pairs of suffixes, like *-al/-less* (see Appendix II for results).

English suffixation and stress

- English suffixes that can apparently attach to the same kind of base have different effects on stress assignment [9].
- On "adjective-like" bases for instance, -*ity* shifts stress while -*ness* doesn't (glóbal → globálity, glóbalness).
 - Means that *-ity* has access to the phonological features of its base, while *-ness* doesn't (phonological opacity)...
 - Suggests that *-ity* attaches to an uncategorized *root* to form a noun and participates in a LL operation, while *-ness* attaches to a *word* (adjective) and participates in an UL operation.

- Assuming phonological opacity correlates with "semantic" opacity, -*ity*-affixation (LL) should yield more variable meanings on average than -*ness*-affixation (UL).
- The prediction can extend to other LL/UL pairs of suffixes, like *-al/-less* (see Appendix II for results).

Results for the English Case study

- Dispersion contrast significant for all models, small to medium effect sizes.
- Variation contrast significant for all models but Word2Vec (only marginally significant), medium to large effect sizes.
- Confirms that the semantic effect of -ness affixation is less arbitrary than that of -ity affixation in word embeddings.

	Word2Vec	GloVe	fastText	BERT
п	29	126	144	610
"dispersion"	1e-10	0	0	0
	.21 (S)	.46 (M)	.38 (M)	.30 (S)
""	.07	5e-12	4e-13	2e-59
variation	.21 (S)	.46 (M)	.40 (M)	.49 (L)

Table 2: *p*-values (2-tailed Wilcoxon) and effect sizes (Cliff's Δ ; N=Negligible; S=Small; M=Medium; L=Large) for dispersion and variation measures and 4 embedding models

Results for the English Case study

- Dispersion contrast significant for all models, small to medium effect sizes.
- Variation contrast significant for all models but Word2Vec (only marginally significant), medium to large effect sizes.
- Confirms that the semantic effect of -ness affixation is less arbitrary than that of -ity affixation in word embeddings.

	Word2Vec	GloVe	fastText	BERT
п	29	126	144	610
"dispersion"	1e-10	0	0	0
	.21 (S)	.46 (M)	.38 (M)	.30 (S)
""	.07	5e-12	4e-13	2e-59
variation	.21 (S)	.46 (M)	.40 (M)	.49 (L)

Table 2: *p*-values (2-tailed Wilcoxon) and effect sizes (Cliff's Δ ; N=Negligible; S=Small; M=Medium; L=Large) for dispersion and variation measures and 4 embedding models

ro	Case study #1	Case study #2	Conclusion	References	Appendices
000	0000000	0000●	0000		00000000000

Results for the English Case study

- Dispersion contrast significant for all models, small to medium effect sizes.
- Variation contrast significant for all models but Word2Vec (only marginally significant), medium to large effect sizes.
- Confirms that **the semantic effect of** *-ness* **affixation is less arbitrary than that of** *-ity* **affixation** in word embeddings.

	Word2Vec	GloVe	fastText	BERT
п	29	126	144	610
"dispersion"	1e-10	0	0	0
	.21 (S)	.46 (M)	.38 (M)	.30 (S)
"verietien"	.07	5e-12	4e-13	2e-59
variation	.21 (S)	.46 (M)	.40 (M)	.49 (L)

Table 2: *p*-values (2-tailed Wilcoxon) and effect sizes (Cliff's Δ ; N=Negligible; S=Small; M=Medium; L=Large) for dispersion and variation measures and 4 embedding models

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	●○○○		00000000000

Conclusion and Discussion

- We brought evidence in support of word embeddings' distinguishing between levels of morphological derivation:
 - In Hebrew, contrast between denominal and root-derived verbs w.r.t. how close they are to the relevant root-derived noun.
 - In English, contrast between pairs of affixes w.r.t. how stable their effect is on the base word.
- We tested a variety of language models, showing that **the prediction was quite robust**.
- Models that did not verify the hypothesis were often tested on smaller datasets (e.g. Word2Vec in the English case study); or were characterized by a fairly small initial dimensionality (e.g. GloVe₅₀ in the Hebrew case study).
- The failure of BERT in the Hebrew study for the stronger hypothesis remains relatively unclear.

Case study #2 00000 Conclusion ○●○○ References

Appendices 00000000000

- We brought evidence in support of word embeddings' distinguishing between levels of morphological derivation:
 - In Hebrew, contrast between denominal and root-derived verbs w.r.t. how close they are to the relevant root-derived noun.
 - In English, contrast between pairs of affixes w.r.t. how stable their effect is on the base word.
- We tested a variety of language models, showing that **the prediction was quite robust**.
- Models that did not verify the hypothesis were often tested on smaller datasets (e.g. Word2Vec in the English case study); or were characterized by a fairly small initial dimensionality (e.g. GloVe₅₀ in the Hebrew case study).
- The failure of BERT in the Hebrew study for the stronger hypothesis remains relatively unclear.

Case study #1 0000000 Case study #2

Conclusion ○●○○ References

Appendices 00000000000

- We brought evidence in support of word embeddings' distinguishing between levels of morphological derivation:
 - In Hebrew, contrast between denominal and root-derived verbs w.r.t. how close they are to the relevant root-derived noun.
 - In English, contrast between pairs of affixes w.r.t. how stable their effect is on the base word.
- We tested a variety of language models, showing that **the prediction was quite robust**.
- Models that did not verify the hypothesis were often tested on smaller datasets (e.g. Word2Vec in the English case study); or were characterized by a fairly small initial dimensionality (e.g. GloVe₅₀ in the Hebrew case study).
- The failure of BERT in the Hebrew study for the stronger hypothesis remains relatively unclear.

Case study #1 0000000 Case study #2

Conclusion ○●○○ References

Appendices

- We brought evidence in support of word embeddings' distinguishing between levels of morphological derivation:
 - In Hebrew, contrast between denominal and root-derived verbs w.r.t. how close they are to the relevant root-derived noun.
 - In English, contrast between pairs of affixes w.r.t. how stable their effect is on the base word.
- We tested a variety of language models, showing that **the prediction was quite robust**.
- Models that did not verify the hypothesis were often tested on smaller datasets (e.g. Word2Vec in the English case study); or were characterized by a fairly small initial dimensionality (e.g. GloVe₅₀ in the Hebrew case study).
- The failure of BERT in the Hebrew study for the stronger hypothesis remains relatively unclear.

Case study #1 0000000 Case study #2 00000 Conclusion

References

Appendices

- We brought evidence in support of word embeddings' distinguishing between levels of morphological derivation:
 - In Hebrew, contrast between denominal and root-derived verbs w.r.t. how close they are to the relevant root-derived noun.
 - In English, contrast between pairs of affixes w.r.t. how stable their effect is on the base word.
- We tested a variety of language models, showing that **the prediction was quite robust**.
- Models that did not verify the hypothesis were often tested on smaller datasets (e.g. Word2Vec in the English case study); or were characterized by a fairly small initial dimensionality (e.g. GloVe₅₀ in the Hebrew case study).
- The failure of BERT in the Hebrew study for the stronger hypothesis remains relatively unclear.

Case study #1 0000000 Case study #2 00000 Conclusion

References

Appendices

- We brought evidence in support of word embeddings' distinguishing between levels of morphological derivation:
 - In Hebrew, contrast between denominal and root-derived verbs w.r.t. how close they are to the relevant root-derived noun.
 - In English, contrast between pairs of affixes w.r.t. how stable their effect is on the base word.
- We tested a variety of language models, showing that **the prediction was quite robust**.
- Models that did not verify the hypothesis were often tested on smaller datasets (e.g. Word2Vec in the English case study); or were characterized by a fairly small initial dimensionality (e.g. GloVe₅₀ in the Hebrew case study).
- The failure of BERT in the Hebrew study for the stronger hypothesis remains relatively unclear.

Case study #1 0000000 Case study #2 00000 Conclusion

References

Appendices

- We brought evidence in support of word embeddings' distinguishing between levels of morphological derivation:
 - In Hebrew, contrast between denominal and root-derived verbs w.r.t. how close they are to the relevant root-derived noun.
 - In English, contrast between pairs of affixes w.r.t. how stable their effect is on the base word.
- We tested a variety of language models, showing that **the prediction was quite robust**.
- Models that did not verify the hypothesis were often tested on smaller datasets (e.g. Word2Vec in the English case study); or were characterized by a fairly small initial dimensionality (e.g. GloVe₅₀ in the Hebrew case study).
- The failure of BERT in the Hebrew study for the stronger hypothesis remains relatively unclear.

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- We tried to control for this by using maximally unambiguous forms (e.g. plural). Two potential alternatives:
 - Use contextual word embeddings to disambiguate. However, this relocates the issue in the choice of a "suitable" context for each target word.
 - **Train models on textual data including vowels markings** (*niqqud*). This would probably involve *niqqud*-izing existing datasets... with Machine Learning (!)
- Pairs of English suffixes are more or less frequent on a given base... what if the difference of variability observed for e.g. -*ity* and -*ness* was due to different amounts of noise coming from frequency contrasts? Appendix II shows some posthoc stats that tend to exclude this eventuality.

References

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- We tried to control for this by using maximally unambiguous forms (e.g. plural). Two potential alternatives:
 - Use contextual word embeddings to disambiguate. However, this relocates the issue in the choice of a "suitable" context for each target word.
 - **Train models on textual data including vowels markings** (*niqqud*). This would probably involve *niqqud*-izing existing datasets... with Machine Learning (!)
- Pairs of English suffixes are more or less frequent on a given base... what if the difference of variability observed for e.g. -*ity* and -*ness* was due to different amounts of noise coming from frequency contrasts? Appendix II shows some posthoc stats that tend to exclude this eventuality.

References

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- We tried to control for this by using maximally unambiguous forms (e.g. plural). Two potential alternatives:
 - Use contextual word embeddings to disambiguate. However, this relocates the issue in the choice of a "suitable" context for each target word.
 - Train models on textual data including vowels markings (*niqqud*). This would probably involve *niqqud*-izing existing datasets... with Machine Learning (!)
- Pairs of English suffixes are more or less frequent on a given base... what if the difference of variability observed for e.g. -*ity* and -*ness* was due to different amounts of noise coming from frequency contrasts? Appendix II shows some posthoc stats that tend to exclude this eventuality.

References

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- We tried to control for this by using maximally unambiguous forms (e.g. plural). Two potential alternatives:
 - Use contextual word embeddings to disambiguate. However, this relocates the issue in the choice of a "suitable" context for each target word.
 - Train models on textual data including vowels markings (*niqqud*). This would probably involve *niqqud*-izing existing datasets... with Machine Learning (!)
- Pairs of English suffixes are more or less frequent on a given base... what if the difference of variability observed for e.g. -*ity* and -*ness* was due to different amounts of noise coming from frequency contrasts? Appendix II shows some posthoc stats that tend to exclude this eventuality.

References

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- We tried to control for this by using maximally unambiguous forms (e.g. plural). Two potential alternatives:
 - Use contextual word embeddings to disambiguate. However, this relocates the issue in the choice of a "suitable" context for each target word.
 - Train models on textual data including vowels markings (*niqqud*). This would probably involve *niqqud*-izing existing datasets... with Machine Learning (!)
- Pairs of English suffixes are more or less frequent on a given base... what if the difference of variability observed for e.g. -*ity* and -*ness* was due to different amounts of noise coming from frequency contrasts? Appendix II shows some posthoc stats that tend to exclude this eventuality.

IntroCase study #1Case study #2ConclusionReferences0000000000000000000000000000

Thank you!

And special thanks to: Roger Levy, Adam Albright, Michael Elhadad.

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		00000000000
Selected	d references	l i			

- Maya Arad. "Locality Constraints on the Interpretation of Roots: The Case of Hebrew Denominal Verbs". In: Natural Language and Linguistic Theory 21.4 (Nov. 2003), pp. 737–778. DOI: 10.1023/a:1025533719905. URL: https://doi.org/10.1023/a:1025533719905.
- [2] Piotr Bojanowski et al. "Enriching Word Vectors with Subword Information". In: arXiv preprint arXiv:1607.04606 (2016). DOI: 10.48550/arXiv.1607.04606. URL: https://arxiv.org/abs/1607.04606.
- [3] Jacob Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: CoRR abs/1810.04805 (2018). DOI: 10.48550/arXiv.1810.04805. arXiv: 1810.04805.
- Edouard Grave et al. "Learning Word Vectors for 157 Languages". In: CoRR abs/1802.06893 (2018). DOI: 10.48550/arXiv.1802.06893. arXiv: 1802.06893.
- Louis Guttman. "Some necessary conditions for common-factor analysis". In: Psychometrika 19.2 (June 1954), pp. 149–161. DOI: 10.1007/bf02289162. URL: https://doi.org/10.1007/bf02289162.
- [6] Morris Halle and Alec Marantz. "Distributed Morphology and the Pieces of Inflection". In: *The View from Building 20*. Cambridge, MA: MIT Press, 1993, pp. 111–176.

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		00000000000
Selecte	ed reference	s II			

- [7] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall series in artificial intelligence. Pearson Prentice Hall, 2000. ISBN: 9780131873216.
- [8] Paul Kiparsky. "Remarks on denominal verbs". In: Argument Structure. Ed. by A. Alsina, J. Bresnan, and P. Sells. Stanford: CLSI, 1997, pp. 473–499.
- [9] Paul Kiparsky. "Word Formation and the Lexicon". In: Proceedings of the Mid-America Linguistics Conference, University of Kansas. Ed. by Fred Ingeman. 1982, pp. 3–29.
- [10] Alec Marantz. "Roots: the universality of root and pattern morphology". In: conference on Afro-Asiatic languages, University of Paris VII. Vol. 3. 2000, p. 14.
- [11] Tomas Mikolov et al. "Advances in Pre-Training Distributed Word Representations". In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018). 2018.

Selected	d references	Ш			
Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		00000000000

- Tomás Mikolov et al. "Efficient Estimation of Word Representations in Vector Space". In: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2013. DOI: 10.48550/arXiv.1301.3781. URL: http://arxiv.org/abs/1301.3781.
- [13] Jeffrey Pennington, Richard Socher, and Christopher Manning. "GloVe: Global Vectors for Word Representation". In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1532–1543. DOI: 10.3115/v1/D14-1162. URL: https://aclanthology.org/D14-1162.
- [14] Amit Seker et al. "AlephBERT: A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With". In: CoRR abs/2104.04052 (2021). DOI: 10.48550/arXiv.2104.04052. arXiv: 2104.04052.

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		●0000000000
Annen	dix I [.] Hebre	201			

Data generation procedure

- Elaborate a list of nominal templates with templatic consonants, and match those templates against nouns extracted from the PoS-tagged Knesset Meetings Corpus, to obtain a list of nouns with templatic consonants.
- For each noun N of this list:
 - Extract its root (easy because we know its template!), and generate candidate root-derived verbs (V_i)_{i∈[1,K]} using the verbal templates from Table 3 (next slide).
 - From the noun itself, generate candidate denominal verbs² using the template mapping in Table 5 (next slide).
- Match the candidate forms (and any inflected variant thereof) against the corpus to **filter unattested elements**.
- Manually inspect the remaining candidates.

²Note that one given noun can in practice give rise to several denominal forms, because certain nominal templates are compatible with more than one denominal template, see e.g. row 2 of Table 5.
Appendix I: Hebrew

Case study #1

General testing strategy for Hebrew data

Case study #2

- Generate a dataset of n (N, (V_i)_{$i \in [1,K]$}, D) triplets.
- **Embed** and **reduce** the dimensionality of the data to get vectors that are as meaningful and noiseless as possible.
- **Compute** $CosSim(\overrightarrow{N}, \overrightarrow{D})$ and $\max_i CosSim(\overrightarrow{N}, \overrightarrow{V}_i) / \frac{1}{K} \sum_{i=1}^{K} CosSim(\overrightarrow{N}, \overrightarrow{V}_i)$, for each triplet, to get a list of *n* pairs of scores.
- **Perform** a one-tailed Wilcoxon test for matched-pairs on the data and compute the relevant effect sizes. We used Cliff's Δ because it is a robust, non-parametric measure that ended up being a bit more stringent than Cohen's *d* in our case.

References

Appendices

Intro 00000	Case study #1 0000000	Case study #2 00000	Conclusion 0000	References	Appendices
Appen	dix I: Hebre	ew			
	Verbal tem	olates	Nominal	Denominal	
	CaCaC	2	template	template(s)	
	niCCaC	2	tiCCoCet		
	CiCCeO	C	tiCCoCa	le <mark>t</mark> aCCeC	
	CuCCa	C	taCCiC		

hitCaCCeC Table 3: Verbal templates susceptible to apply at the root level

hiCCiC huCCaC

Step	# datapoints
Generation	1/25
from templates	1455
Filtering	1435-1322
via corpus	= 113
Manual	113-47
inspection	= 66

Table 4: Number of datapoints ateach step of the generation procedure

tiCCoCa taCCiC	letaCCeC
CeCCon	leCaCCen lehitCaCCen
maCCeC	
miCCeCet	lemaCCeC lehitmaCCeC
miCCaC	
<mark>š</mark> aCCeCet	lešaCCeC lehi <mark>š</mark> taCCeC
CaCaCat	leCaCCe <mark>t</mark> lehitCaCCet

Table 5: Correspondence between nominal templates involving templatic consonants and the denominal (verbal) template that can apply on top of them

ntro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		000●0000000
Apper	ndix I: Hebre	Ŵ			

Construction/collection of the word embedding models

- 4 architectures: Word2Vec [12], GloVe [13], fastText [2], BERT [3]:
 - fastText [4] and BERT (AlephBERT, [14]) were pretrained.
 - Word2Vec and GloVe were trained on Hebrew Wikipedia dumps. GloVe was trained in 2 dimensions: 50 and 100.
- Dimension reduction was performed on the data using PCA along with the Guttman-Kaiser criterion [5] to determine the optimal reduced dimension.

Model	Word2Vec	GloVe	fastText	BERT
# vectors	584 160	584 162	2 billion	NA
Initial	100	50/100	300	768
dimension	100	50/100	300	100
PCA-reduced	27	20/16	50	107
dimension	21	20/40	50	107

Table 6: Characteristics of the models 75/82

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		0000●000000
Appen	dix II: Engli	ish			

Data generation procedure

- Merge two Python lexicons: NLTK (236736 words) and english-words (25487 words), for a total of 240788 words.
- Given two suffixes s_1 and s_2 :
 - find the words ending with s₁ in the lexicon;
 - replace s₁ by s₂;
 - if the newly formed word is also present in the lexicon (modulo a few character changes), add the triplet (*b*, *b*-*s*₁, *b*-*s*₂) to the dataset.
- This generated 683 triplets for *-ity/-ness* and 555 triplets for textit-al/*-less*, that we manually filtered.
- Triplets for which at least one element was not "embeddable" were also automatically excluded.

Intro 00000	Case study #1 0000000	Case study #2 00000	Conclusion 0000	References	Appendices
Append	dix II: Engli	sh			

Characteristics of the pretrained models

- We chose static embedding with matching initial dimensions. BERT's initial dimension could not be lower tan 768.
- Dimension was reduced by fitting PCA on the relevant datasets, and retaining 90% of the explained variance.

Mod	el	Word2Vec	GloVe	fastText	BERT
Pretrained on		Google News (100B words)	Common Crawl (840B tokens)	Common Crawl (600B tokens)	BookCorpus +Wikipedia (2.5+0.8B words)
Initial dimension		300	300	300	768
PCA-reduced	-ity/-ness	52	129	130	198
dimension	-al/-less	32	79	84	152

78 / 82

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		0000000●000
Append	dix II: Englis	h			

Results for English -al/-less suffixes

- Results overall less significant than for the -ity/-ness pair.
- For Word2Vec however, the size of the dataset (15) is too small, which questions the relevance of the negative result for this model.

	Word2Vec	GloVe	fastText	BERT
n	15	49	54	205
"dispersion"	.054	7e-108	1e-11	0
dispersion	.12 (N)	.53 (L)	.11 (N)	.47 (M)
"variation"	.49	1e-9	.17	9e-26
	.29 (S)	.65 (L)	.16 (S)	.65 (L)

Table 7: *p*-values (2-tailed Wilcoxon) and effect sizes (Cliff's Δ ; N=Negligible; S=Small; M=Medium; L=Large) for dispersion and variation measures and 4 embedding models

80 / 82

Case study #1

The frequency confound (thanks to Adam Albright!)

Case study #2

• A potential confound in the comparison of two suffixes s_1 and s_2 (e.g. *-ity* and *-ness*) might be a difference in frequency between $a-s_1$ and $a-s_2$ for a given adjective a.

Conclusion

- Indeed, less occurrences of a given word may lead a neural model to derive a noisier representation, independently of linguistic theory.
- This would be a big problem if *-ity* and *-al* (predicted to be more variable *in theory*), also happened to be less frequent (and hence, potentially noisier).

References

Appendices

Intro	Case study #1	Case study #2	Conclusion	References	Appendices
00000	0000000	00000	0000		0000000000
Appen	dix II [.] Engli	ish			

Posthoc frequency analysis

- The Table below gathers statistics about the frequency ratios between *a-ity* and *a-ness* (frequencies extracted from Wikipedia by IlyaSemenov on GitHub).
- *-ity* is more frequent than *-ness* on a given base 4 to 5 times *more often*; and when it is the case the discrepancy in frequency is also more drastic!
- Suggests that the frequency contrast in the case of *-ity* and *-ness* does not go in the "confounding" direction!

		Word2Vec	GloVe	fastText	BERT
f-ratios	n	23	93	103	122
favoring	mean	298	1379	1280	1278
ity	median	68	100	100	120
f-ratios	n	6	19	21	32
favoring	mean	41	108	30	72
ness	median	3	5	5	_5
not con	nputed	0	14	20	456

। 82 / 82