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Introduction: the 2-level model of morphology,
and word embeddings
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A few basic principles of word formation

The two-level model ([6, 10] a.o.)
Morphological operations can be of two types...

Lower Level: idiosyncratic, non-compositional, unpredictable.
Upper Level: deterministic, compositional, predicatble.

Given a base element A and a word derived from it B, the
two-level hypothesis predicts that both the semantic and the
phonological relation between A and B depends on the level at
which the derivation takes place.
While the meaning and form of words that diverge at UL are
predicted to be regularly connected, the connection between
words that diverge at LL is predicted to be looser.
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Key semantic predictions of the two-level model
We focus on the semantic effects of the level-distinction, which
makes two key predictions:
A. Words derived from the same element via LL operations

may arbitrarily differ semantically.
B. Words derived from the same element via UL operations

should be closely related semantically.
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What are word embedding models?
Word embeddings are high-dimensional vector
representations of words, based their co-occurrence with
other words in a corpus. [7].
They can be “static” (1 word = 1 fixed vector) or
“contextualized” (1 word = 1 context-dependent vector).
Static embeddings include Word2Vec [12], GloVe [13], and
fastText [2]; contextualized ones include BERT [3].
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Relevance of word embeddings to our task
Embeddings come with a robust measure of semantic
similarity: cosine similarity (∼angle between 2 vectors).
Past empirical evidence in favor of embeddings’
encoding of semantic features and relationships [13].

(a) Positive form → comparative
→ superlative transformations

(b) Masculine ↔ feminine
transformations

Figure 1: Plots from the original GloVe model [13]
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Case study #1: Hebrew denominal verbs
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A bird’s eye view on templatic morphology

A non-concatenative system
In Modern Hebrew, functional heads are instantiated by
“templates”.
Templates are discontinuous sequences of phonemes (usually
vowels), which are intended to be “filled” by root (√ )
consonants.

An illustration of templatic morphology [1]
For instance, template taCCiC (=n-head) can combine with
root

√
xSv to form the word (noun) taxSiv, ‘calculation’.

In the above template, the t is called a templatic consonant.
A root, applied to different templates, yields words with very
different meanings:

√
xSv+CaCuC=xaSuv, ‘important’, no

obvious link with ‘calculation’! In line with prediction A.
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The 2-level model at work in Modern Hebrew

Hebrew denominal verbs
Denominal verbs are derived from a noun. In other words,
they result from the merger of a n-head (LL), followed by that
of a v-head (UL).
It is not easy to tease apart denominals from “basic” verbs
derived directly from a root in English corpora (but see [8]).
Hebrew comes with a clear diagnostic: templatic
consonants! If a verb contains a consonant that (1) belongs
to a known nominal template, and (2) does not belong to the
original root; then the verb is probably denominal [1].

√
xSv

maxSev
‘computer’

mixSev
‘computerized’
(denominal)

xiSev
‘calculated’

maCCeC (n)
CiCCeC (v)

CiCCeC (v)
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Denominal vs root-derived verbs [1]
Back to the predictions of the 2-level model...

A. If a noun N and a verb V derive from the same root (via a LL
operation), we expect them to differ semantically in a
somewhat arbitrary way.

B. If a denominal verb D derives from a base noun N (via a UL
operation), we expect them to be close semantically.

Thus, given a root √ , a noun N, a verb V , a denominal D,
s.t. √ LL→ N, √ LL→ V , and N UL→ D, we expect:

S(N, D) > S(N, V )

For some well-chosen semantic measure S between pairs of
words. Building on the previous example:

S(maxSevN , mixSevD) > S(maxSevN , xiSevV )
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How does the 2-level model translate into a word embedding?
Let us define Area(√ ) as the subspace (convex envelope?) of
{
−→X |√ →∗ X}. The predictions of the 2-level model become:
A. Given a root √ , and A, B, s.t. √ LL→ A, and √ LL→ B, we expect−→A and −→B to be randomly distributed across Area(√ ).
B. Given √ , A and B, s.t. √ LL→ A UL→ B, we expect

−→
A and

−→
B to

be very close to each other within Area(√ ).

Let √ , N, D, (Vi)i∈[1,K ], be s.t. √ LL→ N, ∀i ∈ [1, K ] √ LL→ Vi ,
and N UL→ D. We predict:

CosSim(
−→
N ,

−→
D ) > maxiCosSim(

−→
N ,

−→
Vi ) (Stronger Hypothesis1)

CosSim(−→N ,
−→D ) >

1
K

K∑
i=1

CosSim(−→N ,
−→Vi ) (Weaker Hypothesis)

1The stronger hypothesis is not expected to hold all the time, because the closest −→Vi may accidentally end up
closer to

−→
N than

−→
D is, due to the arbitrariness of LL operations. This motivates the use of the weaker hypothesis.
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(a) Noun: ‘pawning’;
Denominal: ‘to pawn’

(b) Noun: ‘frame’;
Denominal: ‘to frame’

(c) Noun: ‘annoyed’;
Denominals: ‘to get annoyed’,

‘to annoy’

(d) Noun: ‘communication’;
Denominal: ‘to communicate’

Figure 2: 2D-reduction of a few datapoints (PCA, cosine kernel, fastText)
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Results for the Hebrew Case study
We tested 4 architectures: Word2vec [12], GloVe [13],
fastText [4], BERT [14]. The last 2 were pretrained.
Weaker hypothesis (CosSim(−→N ,

−→D )/ 1
K

∑K
i=1 CosSim(−→N ,

−→Vi )):
All Wilcoxon tests appear significant.
Large effect sizes, except for BERT.

Stronger hypothesis (CosSim(
−→
N ,

−→
D )/maxiCosSim(

−→
N ,

−→
Vi )):

All Wilcoxon tests but two (GloVe50, BERT) are significant.
Large effect sizes on the significant results, except for GloVe100.

Word2Vec100 GloVe50 GloVe100 fastText300 BERT768
# datapoints 31 31 31 53 66

Weak hyp.
(mean)

1e-6
.86 (L)

2e-4
.52 (L)

7e-5
.66 (L)

1e-10
.79 (L)

5e-4
.30 (S)

Strong hyp.
(max)

4e-5
.66 (L)

2e-1
.06 (N)

3e-2
.20 (S)

1e-8
.62 (L)

4e-1
.02 (N)

Table 1: p-values (1-tailed Wilcoxon) and effect sizes (Cliff’s ∆; N=Negligible;
S=Small; M=Medium; L=Large) for the weak and strong hypotheses and 5

embedding models 34 / 82
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Case study #2: English suffixation
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English suffixation and stress
English suffixes that can apparently attach to the same kind
of base have different effects on stress assignment [9].
On “adjective-like” bases for instance, -ity shifts stress while
-ness doesn’t (glóbal → globálity, glóbalness).

Means that -ity has access to the phonological features of its
base, while -ness doesn’t (phonological opacity)...
Suggests that -ity attaches to an uncategorized root to form a
noun and participates in a LL operation, while -ness attaches
to a word (adjective) and participates in an UL operation.

Predictions regarding the semantic effect of -ity and -ness
Assuming phonological opacity correlates with “semantic”
opacity, -ity-affixation (LL) should yield more variable
meanings on average than -ness-affixation (UL).
The prediction can extend to other LL/UL pairs of suffixes,
like -al/-less (see Appendix II for results).
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Modeling the prediction

For n triplets (a, a-ity, a-ness) we compute −→-ity = −−→a-ity − −→a
and −−→-ness = −−−→a-ness − −→a using embeddings.
We test if the set of −→-ity vectors exhibits more variability than
the set of −−−→−ness vectors. Two possible measures:

“Dispersion”: pairwise CosSim between all the vectors within
a set. n(n−1)

2 measures per set.
“Variation”: CosSim between all the vectors of a set and its
center (mean vector). n measures per set.

(a) “Dispersion” (b) “Variation”

Figure 3: Measuring variability amongst vectors 44 / 82
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Characteristics of the embeddings
We tested the 4 same architectures (Word2Vec [12], GloVe
[13], fastText [11], BERT [3]), all pretrained.

The first 3 (static) models had an initial dimension of 300;
BERT had a dimension of 768 (corresponding to that of its
second-to-last layer, used to extract the vectors).

(a) −−→−ity vectors (b) −−−→−ness vectors

Figure 4: 2D PCA reduction (cosine kernel) of 20 adjective/noun pairs
embedded using GloVe300. Lines represent the effect of suffixation.
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Results for the English Case study
Dispersion contrast significant for all models, small to medium
effect sizes.
Variation contrast significant for all models but Word2Vec
(only marginally significant), medium to large effect sizes.
Confirms that the semantic effect of -ness affixation is
less arbitrary than that of -ity affixation in word
embeddings.

Word2Vec GloVe fastText BERT
n 29 126 144 610

“dispersion” 1e-10
.21 (S)

0
.46 (M)

0
.38 (M)

0
.30 (S)

“variation” .07
.21 (S)

5e-12
.46 (M)

4e-13
.40 (M)

2e-59
.49 (L)

Table 2: p-values (2-tailed Wilcoxon) and effect sizes (Cliff’s ∆; N=Negligible;
S=Small; M=Medium; L=Large) for dispersion and variation measures and 4

embedding models
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Conclusion and Discussion
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Conclusion
We brought evidence in support of word embeddings’
distinguishing between levels of morphological derivation:

In Hebrew, contrast between denominal and root-derived verbs
w.r.t. how close they are to the relevant root-derived noun.
In English, contrast between pairs of affixes w.r.t. how stable
their effect is on the base word.

We tested a variety of language models, showing that the
prediction was quite robust.
Models that did not verify the hypothesis were often tested on
smaller datasets (e.g. Word2Vec in the English case study);
or were characterized by a fairly small initial dimensionality
(e.g. GloVe50 in the Hebrew case study).
The failure of BERT in the Hebrew study for the stronger
hypothesis remains relatively unclear.
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Caveats and avenue for future work
Written Hebrew, being usually devoid of vowels, is
characterized by a high degree of ambiguity!
We tried to control for this by using maximally unambiguous
forms (e.g. plural). Two potential alternatives:

Use contextual word embeddings to disambiguate.
However, this relocates the issue in the choice of a “suitable”
context for each target word.
Train models on textual data including vowels markings
(niqqud). This would probably involve niqqud-izing existing
datasets... with Machine Learning (!)

Pairs of English suffixes are more or less frequent on a given
base... what if the difference of variability observed for
e.g. -ity and -ness was due to different amounts of noise
coming from frequency contrasts? Appendix II shows some
posthoc stats that tend to exclude this eventuality.
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Thank you!
And special thanks to: Roger Levy, Adam Albright, Michael

Elhadad.
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Appendix I: Hebrew

Data generation procedure
Elaborate a list of nominal templates with templatic
consonants, and match those templates against nouns
extracted from the PoS-tagged Knesset Meetings Corpus, to
obtain a list of nouns with templatic consonants.
For each noun N of this list:

Extract its root (easy because we know its template!), and
generate candidate root-derived verbs (Vi)i∈[1,K ] using the
verbal templates from Table 3 (next slide).
From the noun itself, generate candidate denominal
verbs2using the template mapping in Table 5 (next slide).

Match the candidate forms (and any inflected variant thereof)
against the corpus to filter unattested elements.
Manually inspect the remaining candidates.

2Note that one given noun can in practice give rise to several denominal forms, because certain nominal
templates are compatible with more than one denominal template, see e.g. row 2 of Table 5.
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Appendix I: Hebrew

General testing strategy for Hebrew data
Generate a dataset of n (N, (Vi)i∈[1,K ], D) triplets.
Embed and reduce the dimensionality of the data to get
vectors that are as meaningful and noiseless as possible.
Compute CosSim(

−→
N ,

−→
D ) and maxiCosSim(

−→
N ,

−→
Vi ) /

1
K

∑K
i=1 CosSim(

−→
N ,

−→
Vi ), for each triplet, to get a list of n

pairs of scores.
Perform a one-tailed Wilcoxon test for matched-pairs on the
data and compute the relevant effect sizes. We used Cliff’s ∆
because it is a robust, non-parametric measure that ended up
being a bit more stringent than Cohen’s d in our case.
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Verbal templates

CaCaC
niCCaC
CiCCeC
CuCCaC
hiCCiC
huCCaC

hitCaCCeC

Table 3: Verbal templates susceptible
to apply at the root level

Step # datapoints
Generation
from templates 1435

Filtering
via corpus

1435-1322
= 113

Manual
inspection

113-47
= 66

Table 4: Number of datapoints at
each step of the generation procedure

Nominal
template

Denominal
template(s)

tiCCoCet
tiCCoCa letaCCeC
taCCiC

CeCCon leCaCCen
lehitCaCCen

maCCeC

miCCeCet lemaCCeC
lehitmaCCeC

miCCaC

šaCCeCet lešaCCeC
lehištaCCeC

CaCaCat leCaCCet
lehitCaCCet

Table 5: Correspondence between
nominal templates involving templatic
consonants and the denominal (verbal)
template that can apply on top of them
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Construction/collection of the word embedding models
4 architectures: Word2Vec [12], GloVe [13], fastText [2],
BERT [3]:

fastText [4] and BERT (AlephBERT, [14]) were pretrained.
Word2Vec and GloVe were trained on Hebrew Wikipedia
dumps. GloVe was trained in 2 dimensions: 50 and 100.

Dimension reduction was performed on the data using PCA
along with the Guttman-Kaiser criterion [5] to determine the
optimal reduced dimension.

Model Word2Vec GloVe fastText BERT
# vectors 584 160 584 162 2 billion NA

Initial
dimension 100 50/100 300 768

PCA-reduced
dimension 27 28/46 50 107

Table 6: Characteristics of the models
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Appendix II: English

Data generation procedure
Merge two Python lexicons: NLTK (236736 words) and
english-words (25487 words), for a total of 240788 words.
Given two suffixes s1 and s2:

find the words ending with s1 in the lexicon;
replace s1 by s2;
if the newly formed word is also present in the lexicon (modulo
a few character changes), add the triplet (b, b-s1, b-s2) to
the dataset.

This generated 683 triplets for -ity/-ness and 555 triplets for
textit-al/-less, that we manually filtered.
Triplets for which at least one element was not “embeddable”
were also automatically excluded.
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Characteristics of the pretrained models
We chose static embedding with matching initial dimensions.
BERT’s initial dimension could not be lower tan 768.
Dimension was reduced by fitting PCA on the relevant
datasets, and retaining 90% of the explained variance.

Model Word2Vec GloVe fastText BERT

Pretrained on Google News
(100B words)

Common Crawl
(840B tokens)

Common Crawl
(600B tokens)

BookCorpus
+Wikipedia

(2.5+0.8B words)
Initial

dimension 300 300 300 768

PCA-reduced
dimension

-ity/-ness 52 129 130 198
-al/-less 32 79 84 152
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(a) Word2Vec (b) GloVe

(c) fastText (d) BERT

Figure 5: 2D PCA of the −→-ity and −−→-ness vectors
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Results for English -al/-less suffixes
Results overall less significant than for the -ity/-ness pair.
For Word2Vec however, the size of the dataset (15) is too
small, which questions the relevance of the negative result for
this model.

Word2Vec GloVe fastText BERT
n 15 49 54 205

“dispersion” .054
.12 (N)

7e-108
.53 (L)

1e-11
.11 (N)

0
.47 (M)

“variation” .49
.29 (S)

1e-9
.65 (L)

.17
.16 (S)

9e-26
.65 (L)

Table 7: p-values (2-tailed Wilcoxon) and effect sizes (Cliff’s ∆; N=Negligible;
S=Small; M=Medium; L=Large) for dispersion and variation measures and 4

embedding models
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(a) Word2Vec (b) GloVe

(c) fastText (d) BERT

Figure 6: 2D PCA of the −→-al and −−→-less vectors
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The frequency confound (thanks to Adam Albright!)
A potential confound in the comparison of two suffixes s1 and
s2 (e.g. -ity and -ness) might be a difference in frequency
between a-s1 and a-s2 for a given adjective a.
Indeed, less occurrences of a given word may lead a neural
model to derive a noisier representation, independently of
linguistic theory.
This would be a big problem if -ity and -al (predicted to be
more variable in theory), also happened to be less frequent
(and hence, potentially noisier).
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Posthoc frequency analysis
The Table below gathers statistics about the frequency ratios
between a-ity and a-ness (frequencies extracted from
Wikipedia by IlyaSemenov on GitHub).
-ity is more frequent than -ness on a given base 4 to 5 times
more often; and when it is the case the discrepancy in
frequency is also more drastic!
Suggests that the frequency contrast in the case of -ity and
-ness does not go in the “confounding” direction!

Word2Vec GloVe fastText BERT
f-ratios
favoring

ity

n 23 93 103 122
mean 298 1379 1280 1278

median 68 100 100 120
f-ratios
favoring

ness

n 6 19 21 32
mean 41 108 30 72

median 3 5 5 5
not computed 0 14 20 456
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