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1. Introduction

Word-embedding models, a family of computational models of the lexicon that assign lex-
ical items to dense, high-dimensional vector representations of their meanings, have be-
come immensely popular in the field of natural language processing (see, a.o., Mikolov
et al. 2013a,b, Pennington et al. 2014, Zhao et al. 2019). These models instantiate the dis-
tributional hypothesis in linguistics, according to which a systematic co-occurrence of two
words in similar contexts is indicative of a similarity in the meanings of these two words
(Harris 1954, Firth 1957). This is due to the fact that word-embeddings represent the mean-
ing of a word X as a vector whose values are determined, roughly, by the other words that
co-occur with X in a corpus (Jurafsky and Martin 2000).

The current study provides evidence that these models are sensitive to a distinction
in the study of word-formation between two levels of morphological derivation. Since at
least Siegel 1974, morphological processes have been organized in a hierarchy of two lev-
els, each associated with a distinctive phonology and semantics: a lower level (henceforth,
LL), where derivations may be irregular, non-productive and semantically unpredictable,
and an upper one (henceforth, UL) where they are regular and generally more productive
and predictable. Effectively, the two-level hypothesis posits that words derived by certain
morphological processes, diagnosed via their phonological effect, show certain seman-
tic systematicities that words derived via other processes do not. If the vectors in word-
embedding models represent meanings of words, as they purportedly do, we expect these
models to capture the semantic differences observed in the morphological literature vis a
vis the two-level hypothesis. This paper provides a proof of concept that, indeed, they do.

For a concrete example of the two-level architecture of morphological derivation, take
the English suffixes /-ity/ and /-ness/. The two both join an adjectival base to form an
abstract noun. However, the phonological effect brought about by each suffix is different:

*Thanks to Adam Albright, Michael Elhadad, Itamar Kastner and Roger Levy for fruitful comments. The
code for this project is available on GitHub at the following address: https://github.com/AdeleMortie
r/appendix_NELS53_BE_D_HM.
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only /-ity/ shifts the stress of the input to suffixation to the syllable preceding the suffix,
while /-ness/ leaves the stress-assignment of its input intact, (Chomsky and Halle 1968,
Siegel 1974, Aronoff 1976, Kiparsky 1982). As the examples in (1) illustrate, while /-ity/
seems to have access to the stress features of its base, /-ness/ seems to lack similar access.

(1) áctive actívity áctiveness
mónstrous monstrósity mónstrousness
équal eqúality équalness
fátal fatálity f́atalness

Aronoff (1976) observes that this phonological difference coincides with a semantic
one: while the meaning that is derived by suffixation with /-ness/ is fully predictable given
the meaning of its input, this is not the case for /-ity/. Attaching /-ness/ to an adjectival base
X results in nouns denoting the quality of being X, the extent to which something is X, or
the fact that something is X. The nouns that results from /-ity/ suffixation are related to their
adjectival input in some sense, but the relation is not predictable. For instance, monstrosity
can denote a large and unsightly building, and fatality can denote death in an accident, at
least in addition to the meanings that result from suffixation with with /-ness/.

According to the two-level hypothesis, the difference between /-ity/ and /-ness/ stems
from the fact that suffixation with each of them involves a different level of morphological
derivation: attaching /-ity/ to a base is a LL derivation, while attaching /-ness/ is an UL
one. More generally, given two words derived from a base X , the hypothesis argues that
the phonological and semantic relation between them depends on the level in which their
derivations diverge; given derivatives X ′ and X ′′, where X → X ′ is a LL derivation (e.g.,
monstrous−ity) and X → X ′′ is an UL one (e.g., monstrous−ness), the hypothesis predicts
a more arbitrary semantic relation between X ′ and X than between X ′′ and X , correlating
with a difference in the derivations’ phonological effect on X .

This paper uses the case of English suffixation to illustrate that vector representations of
derived words and their bases in word-embedding models do, indeed, conform to the tenets
of the two-level hypothesis. To do so, in section 2, we first provide a general introduction
to word-embedding models, and introduce quantitative methods for evaluating semantic
predictability within such models. We use these methods in section 3, which illustrates that
the vectors that different word-embedding models assign to instantiations of LL English
suffixes in a corpus are less semantically predictable than those assigned to instantiations
of UL suffixes. Section 4 reviews our previous attempt to demonstrate the sensitivity of
word-embeddings to the two-level distinction in Benbaji et al. (2022), and points to some
crucial shortcomings that render that study insufficient. Section 5 concludes.

2. Word-embeddings and quantitative measures of semantic predictability

A word-embedding is a representation of a word in the form of a dense, high-dimensional,
real-valued vector. It is designed to encode the meaning of a word in such a way that
words that are closer in the vector space are expected to be similar in meaning (Jurafsky
and Martin 2000). To achieve this goal, word-embeddings often end up associating each di-
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mension of the vector space with a tangible semantic or distributional feature (e.g. ±human,
±feminine, ±function word, ±verb) – or potentially, a combination thereof.

How are efficient and meaningful word-embeddings derived? Popular methods include
neural networks (Mikolov et al. 2013b) and dimensionality reduction performed on a word
co-occurrence matrix (Lebret and Collobert 2013). The models examined in this paper –
GloVe, Word2Vec, fastText, BERT – employ different methods, but the general ingredients
remain the same: a model is passed an unstructured input and learns a condensed internal
representation of this input while optimizing a language-related objective function.

In the case of GloVe (Pennington et al. 2014), the vector representation is obtained
from the (preprocessed) word co-ocurrence matrix, with the objective that the dot product
of any two word-vectors (a measure of their similarity) be equal to the logarithm of the cor-
responding words’ probability of co-occurrence. In the Word2Vec (Mikolov et al. 2013a,b)
and fastText (Bojanowski et al. 2016) models, the representation is learned from one-hot
encoded vectors1 or combinations thereof, by either predicting any target word from the
representation of the words surrounding it (Continuous Bag Of Words or CBOW cf. Figure
(2a)), or, by predicting the context from the target word (Skip-gram, cf. Figure (2b)).2

(2) Basic architectures used by fastText and Word2Vec to derive word-embeddings
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a. The CBOW architecture
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b. The Skip-gram architecture

Unlike Word2Vec, fastText models a word as the mean of its constituting n-grams – making
the model more sensitive to morphological regularities. This design also ensures that a vec-
tor can be obtained from any given word, even one that has not been previously “seen” by
the model, which is why embeddings like fastText are sometimes called dynamic, by con-
trasts with static models such as Word2Vec and GloVe. BERT finally, adopts the more
recent Transformer architecture (Vaswani et al. 2017). It is trained to perform masked
language modeling (predict a masked word given a context of arbitrary size), and next-
sentence prediction. BERT embeddings are also dynamic, and were obtained in our case
by extracting the weights of the second-to-last layer of the model (following Xiao 2018).

As mentioned above, word-embeddings are derived as byproducts of a given learning
task; the assumption being that to perform well at such tasks, given an embedding space

1The one-hot vector for the i-th element of a lexicon is defined as the vector whose components are all
zero except the i-th component, which is equal to one.

2The Word2Vec models trained for this paper were initialized with the Skip-gram objective; the fastText
models, with the CBOW objective.
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whose size is significantly smaller than that of the input, a model needs to efficiently en-
code a certain number of distributional regularities of the language, pertaining to syntax,
semantics, and, under certain conditions, morphology. While there is no formal guarantee
that word-embeddings will capture correct linguistic generalizations (though see discussion
in Allen and Hospedales 2019, Ethayarajh et al. 2019), empirical observations suggest that
such models do, in fact, encode semantic relations such as be the capital city of (Mikolov
et al. 2013b), features like gender, and aspects of morphological derivation like compara-
tive and superlative formation (Pennington et al. 2014) – as illustrated in Figure (3).

(3) 2D reductions of the original GloVe/Word2Vec embeddings showing how seman-
tic/morphological relationships are encoded into stable vector translations

a. Country/Capital city b. Masculine/Feminine c. Comparative/Superlative

2.1 Stability of vector sets as a measure of semantic predictability

Consider Figure (3c), representing the position of vectors assigned to adjectives in their
positive form (

Ð→
A), relative to that of vectors assigned to their respective comparative (

ÐÐ→
A-er)

and superlative (
ÐÐ→
A-est) forms. Each word in the figure represents a vector in the embed-

ding space. The dotted lines linking positive-forms to their comparatives, and comparative-
forms to their superlatives also represent vectors, i.e., those derived by subtracting positive-
form vectors from comparative ones ({ÐÐ→A-er−Ð→A ∣ A}), and comparative-form vectors from
superlative ones

ÐÐ→
A-est ({ÐÐ→A-est−ÐÐ→A-er ∣ A}). While these vectors can also be represented as

points in the embedding space, they are depicted as lines here to illustrate their role as the
“positive to comparative” and “comparative to superlative” transformations, respectively.
These transformations seem remarkably “stable” – in the reduced space they are almost
parallel! But how can stability be quantitatively defined over (multidimensional) vectors?
We introduce next two measures of vector-set stability that will make use of a typical mea-
sure of similarity in a high-dimensional space; i.e., cosine similarity.

Cosine similarity is the cosine of the angle between two vectors being compared – itself
equal to the dot product of the vectors divided by the product of their lengths (Equation A).

S(u⃗, v⃗) = u⃗.v⃗
∥u⃗∥×∥v⃗∥ ∈ [−1;+1] (A)

It is a symmetric measure, as its value does not depend on the order of its arguments.
As Figure (4) shows, it is also insensitive to differences of magnitude between the vectors;



Levels of morphological derivation in word-embeddings

the respective proportions of the different features (or vector dimensions) are considered
when comparing two word-vectors, not the absolute values of those features.

(4) Maximum cosine similarity is achieved when the vectors align (have the same di-
rection), while minimum similarity corresponds to vectors with opposite directions

u⃗

v⃗θ

a. θ ∼ 0○

S(u⃗, v⃗) ∼ +1

u⃗

v⃗ θ

b. θ ∼ 90○

S(u⃗, v⃗) ∼ 0

θ

u⃗

v⃗

c. θ ∼ 180○

S(u⃗, v⃗) ∼ −1

With this in mind, we can define two measures of vector-set stability that we call dis-
persion and variation. Dispersion is the set of pairwise negative cosine similarities between
all vectors in a set (cf. Equation B), which quantifies how the directions of all these vec-
tors differ from each other. For a set with n vectors, there are n(n−1)

2 dispersion measures.
Variation refers to the set of negative cosine similarities between each vector of a set and
the centroid (mean vector) of the set (cf. Equation C). It quantifies how the directions of all
vectors differ from that of their mean. A set with n vectors, has n variation measures.

Dispersion({v⃗1, v⃗2, . . . , v⃗n}) = {−S(v⃗i, v⃗ j) ∣ i > j} (B)

Variation({v⃗1, v⃗2, . . . , v⃗n}) = {−S(v⃗i, v⃗) ∣ v⃗i} with v⃗
de f= 1

n

n
∑
i=1

v⃗i (C)

(5) Graphical illustration of the measures of dispersion and variation (angles represent
measures of cosine similarity)

a. Dispersion b. Variation (yellow vector represents the mean)

Dispersion and Variation both map a set of multidimensional vectors to a set of scalars,
whose mean or median can inform us about the overall stability of the vector sample; the
lower the dispersion and variation medians of a vector set are, the stabler that set is. For
concreteness, consider Figure (3c) again, where the comparative transformation vectors
seem almost parallel and have the same direction. The angle between any two of these vec-
tors is thus approximately 0○, and the resulting cosine similarity is close to 1 (cf. Figure
(4)). This in turn entails that the corresponding samples of dispersion and variation mea-
sures is associated to a mean/median close to −1 (cf. Equations B-C). The same holds for
the superlative set. These are thus stable transformations.
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Crucially, this notion of stability corresponds to what we typically think of as semantic
predictability. A transformation is semantically predictable, if the meaning of its output is
determined solely by the meaning of its input combined with the fixed semantic contribu-
tion of the transformation. In an embedding model, a stable transformation corresponds to
a set of aligned vectors, whose shared direction corresponds to the fixed semantic contri-
bution of the transformation. If this direction is known, then given an input word-vector,
we can predict the meaning of the output word-vector without any further information.

Note, finally, that comparing the degree of stability between two vectors samples can
be done through statistical hypothesis testing between the two corresponding samples of
variation and dispersion measures (as will become relevant below). Both measures how-
ever, have some limitations. Variation is relatively robust with respect to outliers,3 but may
become unstable if the vectors are uncorrelated, as in that case the mean vector will be-
come close to the null vector (for which cosine similarity cannot be computed). Dispersion
is slightly more sensitive to outliers4 and may artificially inflate the sample size when per-
forming statistical testing, but has the advantage of yielding robust, well-defined measures.

3. Case study: English suffixation

As discussed in section 1, English suffixes come in two kinds: those that trigger stress-
shifting, whose semantic contribution is not predictable from the meaning of their input,
and those that leave stress-assignment untouched, whose semantics is fully predictable
given that of their input. /-ity/ belongs to the former kind, while /-ness/ belongs to the
latter, as shown in (1). Another two suffixes that exemplify the distinction are /-al/ and
/-less/: the former shifts the stress of its input while the latter does not – see (6).

(6) cómmerce commércial cómmerceless
préjudice prejudícial préjudiceless
rémedy remédial rémediless
séntiment sentiméntal séntimentless

It is easy to see that in this case, too, stress-shifting correlates with semantic unpre-
dictability. While the X-less forms always denote the property of lacking X, /-al/ brings
about a range of different meanings: something commercial is intended to make a profit,
something prejudicial has a harmful, unfair influence, something remedial is provided as a
remedy, and someone sentimental holds specific sentiments, i.e., tenderness and nostalgia.

We use the notion of stability in a vector-space introduced in section 2, to test whether
word-embedding models indeed capture the difference in semantic effect of the two kind
of suffixes. Lower level suffixes, like /-ity/ and /-al/ whose semantic effect is unpredictable,
should correspond to vectors that are less stable (higher dispersion and variation) than the
vectors corresponding to semantically predictable suffixes like /-ness/ and /-less/.

3If a set of n vectors contains one outlier, only nice f rac1n measures of variation will be influenced by it.
4If a set of n vectors contains one outlier, then 2(n−1)

n(n−1) =
2/n measures of variation will be influenced by it.
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To test this hypothesis, we scanned an English dictionary (240788 tokens) for word
triplets ⟨b, b-sLL, b-sUL⟩, where b is a base (resp. adjectival or nominal), b-sLL is the base
adjoined to a LL suffix (resp. /-ity/ and /-al/), and b-sUL is the base followed by an UL
suffix (resp. /-ness/ and /-less/). The resulting triplets were manually inspected to ensure
well-formedness. We obtained the corresponding word-vector triplets ⟨Ð→b ,

ÐÐ→
b-sLL,

ÐÐÐ→
b-sUL⟩, in

four pre-trained embedding models – BERT (Devlin et al. 2018), FastText (Bojanowski
et al. 2016, Grave et al. 2018), GloVe (Pennington et al. 2014) and Word2Vec (Mikolov
et al. 2013a,b) – and reduced their dimensions using Principal Component Analysis (PCA),
cf. Table 1.5 We employ a method recently used by Marelli and Baroni (2015), Hénot-
Mortier (2022), Naranjo and Bonami (2023), Bonami and Naranjo (2023) to compute, for
each triplet, the corresponding “affixal” vectors, derived by subtracting the vector of the
base from that of the affixed form, as in Equations D-E.

Reduced dimensionModel Initial
Dimension (-ity, -ness) (-al, -less)

BERT 768 198 152
FastText 300 130 84
GloVe 300 129 79

Word2vec 300 52 32

Table 1: Dimensions before/after reduction.

∀⟨Ð→b ,
ÐÐ→
b-sLL,

ÐÐÐ→
b-sUL⟩ ∶

Ð→
sb

LL =
ÐÐ→
b-sLL−

Ð→
b (D)

Ð→
sb
UL =
ÐÐÐ→
b-sUL−

Ð→
b (E)

(7) 2D plots (cosine kernel PCA) of samples of 15 pairs of word vectors (base forms
and corresponding affixed form). “Affixal” vectors appear as dashed grey lines

A→ A-ity (LL) N→ N-al (LL) N→ N-al (LL)

5PCA removed the dimensions irrelevant to our problem, while retaining 90% of the explained variance.
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A→ A-ness (UL)

a. FastText

N→ N-less (UL)

b. BERT

N→ N-less (UL)

c. GloVe

Figure (7) gives an impression of the differences in vector stability between LL and UL
vectors: the dotted lines, corresponding to affixal vectors, appear more aligned on the sec-
ond row of figures (UL suffixes) than on the first (LL suffixes). Less impressionistically,
of course, we can measure and compare vector-set stability using dispersion and variation
introduced in section 2.

The hypothesis, recall, is that a sample of LL affixal vectors should exhibit less stabil-
ity, i.e., more dispersion and more variation, than a comparable population of UL affixal
vectors, in line with the two-level architecture of morphological derivation:

∀(sLL,sUL) ∈ {(/-ity/, /-ness/),(/-al/, /-less/)} ∶

Dispersion({
Ð→
sb
UL ∣ b}) ≺ Dispersion({

Ð→
sb

LL ∣ b}) (F)

Variation({
Ð→
sb
UL ∣ b}) ≺ Variation({

Ð→
sb

LL ∣ b}) (G)

In the above formulae, ≺ denotes a statistical inequality between two sets of measures, here
tested using a two-sided (paired) Wilcoxon test. Effect sizes were computed in the form
of Cliff’s ∆ (robust, non-parametric) and Cohen’s d (standard, parametric). The hypothesis
that UL transformations are more stable than LL ones is very consistently verified for the (/-
ity/, /-ness/) pair (cf. Table 2), and associated with medium to large effect sizes. The effect
is not as large for the (/-al/, /-less/) pair (cf. Table 3), especially regarding the variation
metric. We think two factors might explain this mixed pattern. First, the lower sample sizes
in that particular setting (only 15 datapoints could be tested with Word2Vec!) may have
prevented small effects from reaching significance. Second, /-al/ and /-less/ differ more in
their semantics than /-ity/ and /-ness/, which may be a potential confound in the comparison
of their variability.

Dispersion Variation
Model Sample

Size p-value Cliff’s ∆ Cohen’s d
Sample

Size p-value Cliff’s ∆ Cohen’s d

BERT 185745 0 **** .30 (S) .54 (M) 610 2.00e-59 **** .49 (L) .89 (L)
FastText 10296 0 **** .38 (M) .68 (L) 144 3.95e-13 **** .40 (M) .72 (L)
GloVe 7875 0 **** .46 (M) .82 (L) 126 4.73e-12 **** .56 (M) .87 (L)

Word2vec 406 1.16e-10 **** .21 (S) .38 (M) 29 7.60e-2 . .27 (S) .42 (M)

Table 2: Stability of
ÐÐ→
/-ity/ vs.

ÐÐÐ→
/-ness/. N, S, M, L resp. mean negligible, small, medium and

large effect size. Green rows indicate significant results (p < .05).6
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Dispersion Variation
Model Sample

Size p-value Cliff’s ∆ Cohen’s d
Sample

Size p-value Cliff’s ∆ Cohen’s d

BERT 20910 0 **** .47 (M) .88 (L) 205 9.05e-26 **** .65 (L) 1.30 (L)
FastText 1431 1.22e-11 **** .11 (N) .24 (S) 54 1.70e-1 .16 (S) .29 (S)
GloVe 1176 6.98e-108 **** .53 (L) .97 (L) 49 1.31e-9 **** .65 (L) 1.32 (L)

Word2vec 105 5.44e-2 . .12 (N) .27 (S) 15 4.89e-1 .29 (S) .41 (M)

Table 3: Stability of
ÐÐ→
/-al/ vs.

ÐÐÐ→
/-less/, same conventions as above.

3.1 Productive /-ity/ suffixes: initial results

Aronoff and Lindsay (2014) observe that the LL suffix /-ity/ demonstrates “upper level”
behavior in two specific contexts: when it does not influence stress assignment, and when
it evidently stacks over other suffixes such as /-able/. We focus here on the later case.
To determine if /-ity/ in the context of /-able/ is indeed more regular semantically, we
compared the population of the corresponding

ÐÐ→
/-ity/ vectors (that we call here -(abil)

Ð→
/ity/

to avoid confusion) to that of of the previously studied affixal vectors (
ÐÐÐ→
/-ness/ and

ÐÐ→
/-ity/).

We expect the -(abil)
Ð→
/ity/ vectors to be as stable as the

ÐÐÐ→
/-ness/ vectors, and overall more

stable than the other
ÐÐ→
/-ity/ vectors.7 Table 4 shows that the stability measure of -(abil)

Ð→
/ity/

is intermediate between that of
ÐÐ→
/-ity/ and that of

ÐÐÐ→
/-ness/. Note, however, that for BERT and

Word2Vec, the effect size associated with the -(abil)/ity/ vs. /-ness/ comparison is fairly
small, and smaller than the effect size of the -(abil)/ity/ vs. /-ity/ comparison – weakly
suggesting that the semantic predictability of -(abil)/ity/ may be closer to that of /-ness/
than to that of /-ity/. Those results however come with a caveat: contrary to the -(abil)

Ð→
/ity/

sample, the
ÐÐÐ→
/-ness/ and

ÐÐ→
/-ity/ samples used in the above comparison were linked to similar

bases. Such a pairing is not possible for the -(abil)
Ð→
/ity/ sample, as English does not stack

-ness over -able. This entails that the difference measured between the -(abil)
Ð→
/ity/ sample

and the other sample might be due to some idiosyncratic behavior of words ending in -
able, independent of the two-level model of morphology. We leave further discussion of
this issue for future work.

6Significance levels were set as follows:: p < 1e-4 ⇒ ‘****’; p < 1e-3 ⇒ ‘***’; p < 1e-2 ⇒ ‘**’;
p < 5e-2⇒ ‘*’; p < 1e-1⇒ ‘.’ . Effect size thresholds (in absolute value) for Cliff’s ∆ were: [0; .147[⇔
Negligible; [.147; .33[⇔ Small; [.33; .474[⇔ Medium; [.474;+∞[⇔ Large. For Cohen’s d: [0; .1[⇔ N;
[.1; .35[⇔ S; [.35; .65[⇔M; [.65;+∞[⇔ L.

7The reason we avoid exploring non-stress-shifting cases of /-ity/ in embedding models is that this would
involve finding bases in which stress is not final, which is not straightforward and may not yield enough data.
Whenever the base carries final stress, one cannot tell if the derived /-ity/ form with antepenultimate stress is
vacuously “shifted” – or not. Unambiguous bases thus usually contain 3 or more syllables.



Benbaji-Elhadad, Doron & Hénot-Mortier

Measure & Test8Model Comparison Dispersion Variation

-(abil)/ity/ vs. /-ity/
∗∗∗∗

< (S)
∗∗∗∗

< (M/L)
BERT

-ness vs. -(abil)/ity/
∗∗∗∗

< (N/S)
∗∗∗

< (N/S)

-(abil)/ity/ vs. /-ity/
∗∗∗∗

< (S/M)
∗∗∗∗

< (S/M)
fastText

-ness vs. -(abil)/ity/
∗∗∗∗

< (S/M)
∗∗∗∗

< (S/M)

-(abil)/ity/ vs. /-ity/
∗∗∗∗

< (S/M)
∗∗∗

< (S/M)
GloVe

-ness vs. -(abil)/ity/
∗∗∗∗

< (L)
∗∗∗∗

< (L)

-(abil)/ity/ vs. /-ity/
∗∗∗∗

< (M/L)
∗∗∗

< (M/L)
Word2Vec

-ness vs. -(abil)/ity/
∗∗∗∗

< (S)
.
< (S)

Table 4: Two-way comparisons between the stability of -(abil)
Ð→
/ity/ and resp.

ÐÐ→
/-ity/ and

ÐÐÐ→
/-ness/

4. Hebrew denominal verbs

In Benbaji et al. 2022, we attempted to examine the sensitivity of word-embedding models
to the two-level architecture using a data set from Modern Hebrew. This section briefly
reviews the results of that study, illustrating why, while suggestive, they do not justify the
claim we argue for in this paper; namely, that word-embedding models are sensitive to the
two-level distinction in morphology.

4.1 Background

In Benbaji et al. 2022 we used a dataset which involves Hebrew denominal verbs, namely
verbs derived from nouns. We took for granted the well-known analysis of such verbs in
Arad 2003, according to which they are the result of applying a nominalizing head to an
abstract root (assumed to be an LL operation), and then applying a verbalizing head to the
result (a UL operation). Our data set consisted of triplets of the form <N, V, D> such that N
is a noun, V a verb or a group of verbs derived from the same root as N, and D a denominal
verb derived from N. N and V are both assumed to derive from LL operations over abstract
roots, while, as stated above, N and D are related to each other via an UL process.

What does the two-level hypothesis predict in this case? If one accepts Arad’s analysis,
according to which non-denominal verbs are derived via LL operations over abstract roots,
while denominal ones involve UL operations over words, the hypothesis predicts N and D
to be related by a stable transformation, while the relation between N and any root derived
verb V should be arbitrary, as they are all derived via LL operations from abstract roots.

Evaluating the prediction in word-embeddings is not obvious. While it is certainly pos-
sible to measure the predictability of the UL step from N to D (using the stability measure
developed above), it is difficult to compare that measure to the stability of the derivation of

8Mann–Whitney U test, Holm–Bonferroni correction for multiple hypothesis testing.
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N and V from an abstract root, which lacks an independent representation in a corpus and
thus lacks a straightforward vectoral representation.

In lieu of comparing stability measures, we interpreted the prediction of the two-level
model as implying that D should be semantically close to N. More precisely, given an
abstract root√ , we define Area(√ ) as the convex envelope of the set of all words derived

from that root {Ð→X ∣√ Ð→∗ X}.9 We can formulate the prediction as follows:

(8) a. Given a root√ , and words A, B, s.t.√ LLÐ→A, and√ LLÐ→B, we expect
Ð→
A and

Ð→
B to be randomly distributed across Area(√ ).

b. Given √ , A and B, s.t. √ LLÐ→ A
ULÐ→ B, we expect

Ð→
A and

Ð→
B to be relatively

close to each other within Area(√ ).

To measure proximity, we use the standard metric of cosine similarity (see equation A in
section 2.1 above for a formal definition). It follows from (8) that for our triplets of the
form <N, V, D>, D should be closer to N than V is. This is the hypothesis we set out to test.

Hebrew is a good testing ground for that hypothesis because, if Arad (2003) is correct,
it provides us with an orthographically-represented diagnostic for denominal verbs (un-
like, say, English): In short, Hebrew words are generally derived by applying a template
(which determines the syntactic category of the word) to a three-consonant root (which
never appears in the language without a template). Templates are discontinuous sequences
of phonemes, consisting mostly (but not only) of vowels, with gaps that are filled by the
root’s consonants. Arad notices that some verbs contain a consonant belonging neither to
their root nor to their verbal template, but to a nominal template. She argues that these
verbs must involve denominalization; i.e., result from first applying the nominal template
to a root, and only then applying the verbal template. We used this diagnostic to generate
a pool of denominal verbs (along with the nouns they are derived from and a set of verbs
derived from the same root).

4.2 Results

Triplets of the form ⟨N√ , VN√ , {V (1)√ , . . . ,V (k)√ }⟩, where √ is a fixed root, N√ a root-derived

noun, VN√ a denominal verb derived from it, and {V (1)√ , . . . ,V (k)√ } a set of root-derived verbs,
were semi-automatically generated using the (morphologically annotated) Knesset Meet-
ings Corpus (Itai and Wintner 2019), by matching words against predefined templates in-
volving templatic consonants. Triplets were manually inspected to ensure they were well-
formed and minimally ambiguous, resulting in 66 datapoints. Word vectors were obtained
using four different word-embedding models: AlephBERT (Devlin et al. 2018, Seker et al.
2021), FastText (Bojanowski et al. 2016, Grave et al. 2018), GloVe (Pennington et al. 2014)
and Word2Vec (Mikolov et al. 2013a,b); and various initial embedding dimensions. Aleph-

9* denotes the reflexive transitive closure of a relation (here, that of morphological derivation).
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BERT and FastText300 were pretrained; the other models were trained by us. Dimension-
ality was reduced using Principal Component Analysis (PCA), as in section 3.

For each triplet, the following inequality between cosine similarities was expected to
hold in the reduced vector space:

∀√ ∶ 1
k

k
∑
i=1
S (ÐÐ→N√ ,

ÐÐ→
V (k)√ ) < S (ÐÐ→N√ ,

ÐÐ→
VN√ ) (H)

We used the same test as in section 3. The results in Table 5 show that the hypothesis
is verified for most models and with overall large effect sizes. The BERT model seems to
be the only true exception to an otherwise very robust pattern.

Hypothesis H (mean)
Model

Initial
Dim. p-value Cliff’s ∆ Cohen’s d

BERT 768 6.35e-2 . -.23 (S) -.37 (S)
50 4.99e-7 **** .70 (L) 1.46 (L)

100 2.79e-9 **** .82 (L) 1.75 (L)FastText
300 4.66e-10 **** .87 (L) 2.04 (L)
50 1.07e-4 *** .54 (L) 1.04 (L)

100 1.54e-5 **** .70 (L) 1.12 (L)GloVe
300 1.95e-4 *** .60 (L) .96 (L)
50 4.00e-8 **** .85 (L) 1.92 (L)

100 4.00e-8 **** .84 (L) 1.95 (L)Word2vec
300 6.52e-8 **** .81 (L) 1.78 (L)

Table 5: Results of the tests, same conventions as in section 3.

4.3 Limitations of the Hebrew case study

This study has two crucial limitations that prevent it from constituting definitive evidence
for the sensitivity of word-embeddings to the two-level distinction. First, our dataset con-
struction relied on Arad’s analysis of the templatic consonants on verbs as markers of
denominalization. This however, has been challenged recently by Rasin et al. (2021), who
argue that templatic consonants do not necessarily come from nominal bases, based on
verbs in the tiCCeC template (e.g., tiSPel, ‘interrogate’), which contain a templatic /t/ but
lack a nominal counterpart.

A deeper issue lies in our translation of the two-level hypothesis’ predictions into word-
embedding models. Roughly, we assumed that the unpredictability of LL operations vs. the
predictability of UL ones should translate into a contrast in semantic similarity,10 but this
assumption does not seem to us to be strongly rooted. A better way to test the two-level
hypothesis would be to study differences in stability, between, say, LL verb formation op-
erations and UL denominalization operations. This however, is not possible in the case

10See Grestenberger and Kastner 2022 for a relevant discussion of semantic predictability in the context of
Hebrew denominalization.
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of Hebrew because assigning a vector-set representation of the relevant LL operations re-
quires a representation of the root itself, which is not straightforwardly computable by word
embedding models, given that roots never appear without a template in corpora.

In English, inputs to both LL and UL operations appear in corpora, and therefore, the
case study of English suffixation presented in this paper avoids the pitfalls of the Hebrew
data set. We therefore take this case study to be a more robust piece of evidence for the
sensitivity of word-embedding models to the two-level distinction.

5. Conclusion

In this study, we provide evidence that word-embedding models are sensitive to the level at
which morphological processes take place. We do that by comparing the effect on a word’s
representation in different word-embedding models of different pairs of morphological op-
erations – each consisting of a lower level (LL) operation and an upper level (UL) one. We
test pairs of English suffixes – /-ity/ vs. /-ness/ and /-al/ vs. /-less/ – and show that the effect
of the UL ones is more stable (namely, predictable) than that of the LL ones. This expands
on our attempt to illustrate the sensitivity of word-embeddings to the level-distinction in
Benbaji et al. 2022, which, as discussed above, is insufficient.

Crucially, the models we examine in this paper only have access to, and thus base their
vectoral representations of words on, the distribution of each word in the given corpora.
Their observed sensitivity to morphological distinctions must therefore be mediated by the
semantic effects of these distinctions, which may often seem very subtle. This work, then,
serves as an addition to the growing body of evidence indicating that word-embedding
models indeed capture fine-grained aspects of word meanings. More broadly this work
can be viewed as lending support to the distributional hypothesis, according to which the
semantics of a word is manifested by its distribution.
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