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Abstract

Large Language Models (LLMs) are often eval-
uated against massive benchmarks based on
general-purpose tasks, which, despite being
useful for concrete applications, tell us very lit-
tle about the capacity of LLMs to learn specific
and challenging aspects of the grammar. Here,
we evaluate whether LLMs learn to identify a
particular structure attested in Romance (and
French in particular), called the pseudorelative.
This structure, which is often surface-similar to
a relative clause, is linked to robust syntactic
and semantic restrictions. We present a series
of experiments to test if LLMs pretrained on
massive yet general corpora, manage to learn
those various restrictions. Our results suggest
that LLMs learn some but not all of these prop-
erties, but crucially fail at recognizing the most
specific of them: cliticization.

1 Background on pseudorelatives

Pseudorelatives (PRs) (Schwarze (1974); Radford
(1975); Kayne (1975); Guasti (1988) a.o.) resemble
relative clauses (RCs) but exhibit a specific cluster
of properties: (1) their head noun can be cliticized;
(2) they only feature subject gaps; (3) they only
appear below perception verbs; (4) they require the
matrix and embedded tenses to match; (5) they im-
ply the existence/truth of the embedded event even
under matrix negation (Moulton and Grillo, 2015).
Those various properties are illustrated below.

(1) Head noun cliticization
Jean
Jean

la
3.SG.CL

voit
sees

qui
that

sourit.
smiles.

‘Jean sees her smiling.’

(2) Object gap (+cliticization)
* Jean

Jean
la
3.SG.CL

voit
sees

que
that

Marc
Marc

salue
greets.

.

Intended: ‘Jean sees Marc greeting her.’

(3) Non-perception verb (+cliticization)
* Jean

Jean
la
3.SG.CL

pense
thinks

qui
that

sourit.
smiles.

Intended: ‘Jean thinks she is smiling.’

(4) Tense mismatch (+cliticization)
* Jean

Jean
la
3.SG.CL

voit
sees.PRS

qui
that

souriait.
smiled.PST.

Intended: ‘Jean sees her while she smiled.’

(5) Event presupposition
Jean
Jean

ne
NEG

la
3.SG.CL

voit
sees

pas
NEG

qui
that

sourit.
smiles.

‘Jean doesn’t see her smiling (she does).’

Cliticization is perhaps the most robust diagnostic
used to disambiguate PRs from RCs; without a
cliticized head, and assuming conditions (2)-(5)
are met, a PR will usually remain ambiguous with
a (string-identical) RC. This is shown in (6).

(6) No cliticization: ambiguous parse
Jean
Jean

voit
sees

Marie
Marie

qui
that

sourit.
smiles.

‘Jean sees Marie, who smiles.’ (relative).
‘Jean sees Marie smiling.’ (pseudorelative)

Because of is rareness in corpora, its ambiguity
with relative clauses, and the inability of LLMs
to access external disambiguating cues (comma,
intonation), the pseudorelative remains relatively
opaque to current NLP benchmarks (Wang et al.,
2018, 2019; Bowman et al., 2015; Williams et al.,
2018; Rajpurkar et al., 2016, 2018; Zellers et al.,
2018) which are used to assess LLMs’ perfor-
mances. Do LLMs pretrained on massive (but also
very general, non-targeted, and therefore impover-
ished) corpora learn something about pseudorela-
tives anyway?

2 Preliminary corpus study

We run a corpus study to verify the claim that LLMs
are mostly exposed to structurally ambiguous sen-
tences such as (6). We start with simple exact
Google queries following the patterns in (7), where
V denotes one of the verbs listed in Table 1, and
CL is a clitic pronoun (le or la if V starts with a
consonant, l’ if V starts with a vowel).



(7) a. “Il
He

V
V

*
wildcard

qui”
that

b. “Il
He

{le, la, l’}
CL

V
V

qui”
that

The number of hits for these queries are gathered
in Table 1. If some perception verbs are clearly
more frequent than others (compare voir, ‘see’ vs.
épier, ‘spy on’), the tendency regarding cliticized
constructions is clear: they are between 10,000
and 100,000 times less frequent than the string-
ambiguous structures similar to (6).

exact query →
V↓ (7a) (7b) #(7b)

#(7a)+#(7b)

voit (see) 262,000,000 22,440 8.5e-5
apercoit (spot) 11,700,000 1,230 1.1e-4
regarde (look at) 192,000,000 6,370 3.3e-5
observe (watch) 51,100,000 759 1.5e-5
épie (spy on) 237,000 1 4.2e-6
surprend (catch) 21,900,000 247 1.1e-5
entend (hear) 70,200,000 7,820 1.1e-4
écoute (listen to) 121,000,000 18,200 1.5e-4

Table 1: Number of results for non-cliticized (ambigu-
ous) and cliticized (unambiguous) PR structures re-
turned by Google Search for different perception verbs.

To confirm this intuition, we matched a series of
regular expressions1 against a subset of the French
OSCAR corpus (Ortiz Suárez et al., 2019; Caswell
et al., 2021; Abadji et al., 2021), used to train mod-
els such as CamemBERT (Martin et al., 2020).
The results shown in Table 2 confirm that a typ-
ical French LLM is mostly trained on ambiguous
PR structures. Learning properties (1)-(5) would
therefore require the models to exploit weak signals
in the data to draw syntactic and semantic general-
izations. The experiments that follow test whether
LLMs achieve this goal – or not.

3 Experiment 1

Adapting a recent psycholinguistic experiment
(Pozniak et al., 2019), we test if 8 LLMs trained
on general French corpora (see Tab. 3 rows 1-8),
learned the association between properties (3)-(4),
pertaining to the type of the embedding verb and
tense anaphoricity. The expected effects are: a

1The regular expressions were refined from the templates
in (7) to include all possible subject pronouns and allowed up
to 3 unspecified words in the wildcard (*). This restricts the
search space for ambiguous relative constructions of the from
of (6) but ensures that other constructions (such as an unam-
biguous relative clause located “far away” from the perception
verb) are not matched by accident. It also allows to speed-up
the search. Consequently, the matches and the proportions
gathered respectively in the second and last columns of Table
2 should be respectively read as lower- and upper-bounds.

regular expression →
V↓ (7a)’ (7b)’ #(7b)′

#(7a)′+#(7b)′

voir 15157 168 1.1e-2
apercevoir 725 1 1.4e-3
regarder 2442 28 1.1e-2
observer 813 0 0.0
épier 13 0 0.0
surprendre 99 0 0.0
entendre 1975 27 1.3e-2
écouter 632 1 1.6e-3

Table 2: Number of matches for non-cliticized (ambigu-
ous) and cliticized (unambiguous) regular expressions
on 10,160,000 documents from the OSCAR corpus (con-
taining a total of 52,037,098 documents).

preference for embedding of (pseudo)relatives un-
der perception verbs (as opposed to e.g. stative
verbs); a preference for matching tenses between
the matrix clause and the embedded clause; an in-
teraction between those two factors, favoring tense
matching specifically under perception verbs. We
take the interaction to be the most critical effect.
These predictions were assessed reusing the 2×2
design (verb_type×tense_match) introduced by
the original study. Example stimuli illustrating this
design are given in (8) and their parameters are
summarized in Table 4.

ID Model Lang. Reference
1 flaubert_base_uncased fr Le et al. (2020)
2 camembert-base fr Martin et al. (2020)
3 gpt2-base-french fr (Cla)
4 gpt2-wechsel-french fr Minixhofer et al. (2022)

5 bert-base-multi-
lingual-cased multi Devlin et al. (2018)

6 xlm-roberta-base multi Conneau et al. (2019)
7 xlm-roberta-large multi Conneau et al. (2019)
8 xlm-mlm-17-1280 multi Lample and Conneau (2019)
9 bert-large-cased en Devlin et al. (2018)

10 gpt2-large en Radford et al. (2019)
11 xlnet-large-cased en Yang et al. (2019)

Table 3: Models used in Exp. 1 and 2

(8) Example stimuli reused from (Pozniak et al., 2019).

a. Marie a écouté le ministre qui critiquait le président.
b. ?Marie écoute le ministre qui critiquait le président.
c. Marie a été mariée au ministre qui critiquait le président.
d. Marie est mariée au ministre qui critiquait le président.

Sentence verb_type tense_match
(a.) perception y
(b.) perception n
(c.) stative y
(d.) stative n

Table 4: Summary of the 2×2 design of (Pozniak et al.,
2019) reused in Exp. 1

Building on (Hale, 2001; Levy, 2008), our
proxy for grammaticality was taken to be the log-
probability assigned to a given sentence by the



LLM (see equations below). It was computed us-
ing the minicons library (Misra, 2022).

GRAMMATICALITY(wt) ≃ −SURPRISAL(wt)

= logP (wt|w1 . . . wt−1)
2

GRAMMATICALITY(w1 . . . wt) ≃ −
t∑

i=1

SURPRISAL(wi)

Linear mixed-effect modeling (performed with
statsmodels, (Seabold and Perktold, 2010)) re-
veals that 6/8 LMs favor matching tenses, and 4/8
more so under perception verbs (verb*tense in-
teraction) – supporting the expected interaction
between (3) and (4) in French. Among the best
performing models are a French-only (autoregres-
sive) GPT-2 model (model 3) and a (bidirectional)
multilingual RoBERTa model (model 7).

ID best AIC? verb_type tense interaction
1 n . ✗ n.s. . ✓
2 n . ✓ ** ✓ n.s.
3 y n.s. ** ✓ * ✓
4 y n.s. ** ✓ . ✓
5 n n.s. ** ✓ n.s.
6 y n.s. ** ✓ . ✓
7 y n.s. ** ✓ * ✓
8 n ** ✓ n.s. n.s.

Table 5: Significance results of LME modeling for
grammaticality ∼ verb_type+tense+verb_type∗
tense + (1|frame), where frame refers to the lexical
skeleton shared by all stimuli in e.g. (8).3

English models (cf Tab. 3, rows 9-11) tested
on English equivalents of the stimuli exemplified
in (8), did not exhibit similar effects – consistent
with English not allowing pseudorelatives. Plots of
the distributions of grammaticality scores obtained
with xlm-roberta-large (model 7) in both lan-
guages are given in Figure 1.

4 Experiment 2

We test the same LLMs on 4800 semi-automatically
generated sentences following the template in (9)
and differing in (1) head noun cliticization; (2) the
gap’s position (subject/object) and (3) the matrix
verb’s type (perception vs. attitude/action).

2In the case of BERT-like bidirectional models, this for-
mula is adapted to masked language modeling: the probability
of a word is computed given its left and right context.

3The ‘best AIC?’ column specifies if the formula yielded
the lowest Akaike Information Criterion, as opposed to other
simpler formulas without interactions or main effects. Other
notations: ‘.’ = p ∈].05; .1], ‘*’= p ∈].01; .05]; ‘**’= p ∈
[0; .01]; ✓=coefficient validates the hypothesis; ✗=coefficient
disproves the hypothesis.

4The scores are overall negative because they correspond
to negative log probabilities (cf. equations above).

ID best AIC? verb type tense interaction
5 y ** ✓ * ✗ * ✗
6 n . ✓ . ✗ . ✗
7 n n.s. * ✗ n.s.
8 n ** ✓ n.s. n.s.
9 n n.s. n.s. . ✓
10 n ** ✓ * ✓ n.s.
11 n n.s. n.s. n.s.

Table 6: Significance results of LME modeling with
English data. Same notations and parameters as Table
5. Strikingly, all but 1 model did not yield the best AIC
for the formula involving an interaction term.

(a) French (b) English

Figure 1: Distributions of the grammaticality scores4 for
Exp. 1 with xlm-roberta-large. ∆ refers to Cliff’s
Delta (non-parametric measure of effect size). N, S, M
resp. mean ‘negligible’, ’small’, ’medium’.

(9) Template for the stimuli of Exp. 2{
Il/Elle

}
–

{
le/la/l’

∅

}
–

{
voit/...

pense/...

}
–

PRO – (CL) – V –{
∅

Marie/Jean

}
–

{
subject-gap relative
object-gap relative

}
(N) – CP

(10) Example stimuli for Exp. 2

a. Il voit Marie qui embrasse Jean.
b. Il voit Jean que Marie embrasse.
c. Il la voit qui embrasse Jean.
d. * Il le voit que Marie embrasse.
e. * Il pense Marie qui embrasse Jean.
f. * Il pense Jean que Marie embrasse.
g. * Il la pense qui embrasse Jean.
h. * Il le pense que Marie embrasse.

Given this design, we expect an overall pref-
erence for matrix perception verbs, subject gaps
and non-cliticized constructions, but also a positive
interaction between perception verbs and clitics,
perception verbs and subject gaps, clitics and sub-
ject gaps, and all three variables together. As Tab.



Sentence clitic? gap verb_type
(10a) n S perception
(10b) n O perception
(10c) y S perception
(10d) y O perception
(10e) n S attitude
(10f) n O attitude
(10g) y S attitude
(10h) y O attitude

Table 7: Summary of the 2×2×2 design of Exp. 2

8 shows, linear mixed-effect modeling reveals a
robust preference for subject-gaps (8/8 models, cf.
col. 3) and more so under perception verbs (5/8
models, cf. col. 6), supporting (2)+(3). The desired
clitic*gap*verb_type interaction however, was
only captured by 1/8 models (cf. col. 8). Strikingly
also, the interaction between cliticization and sub-
ject gaps is predicted by most models to have a
negative effect on grammaticality, contra (1)+(2).

ID v g c v*c v*g c*g v*c*g
1 . ✓ ** ✓ ** ✓ ** ✗ . ✗ ** ✓ n.s.
2 . ✓ ** ✓ ** ✓ ** ✗ ** ✓ ** ✗ n.s.
3 n.s. ** ✓ ** ✗ ** ✓ ** ✓ ** ✗ . ✓
4 n.s. ** ✓ ** ✗ ** ✗ ** ✗ ** ✗ ** ✓
5 n.s. ** ✓ ** ✗ ** ✓ n.s. ** ✗ n.s.
6 n.s. ** ✓ ** ✗ ** ✓ ** ✓ ** ✗ . ✗
7 n.s. ** ✓ ** ✗ ** ✓ ** ✓ ** ✗ ** ✗
8 n.s. ** ✓ * ✗ ** ✗ ** ✓ ** n.s.

Table 8: Significance results of LME modeling for
grammaticality ∼ verb_type + gap + clitic +
verb_type ∗ clitic ∗ gap. Same notations as before.

The best performing model for this experiment
appears to be a French-only GPT-2 model (model
3) – which was also among the best models for
Exp. 1. Grammaticality scores corresponding to
this model are plotted in Fig. 4.

(a) Perception verbs (b) Attitude/action verbs

Figure 2: Distributions of the grammaticality scores for
Exp. 2 with gpt2-base-french. Same notations as
before.

5 Experiment 3

We finally test property (5) on 4 BERT-like LMs
fine-tuned to perform natural language inference

(see Table 9).

ID Model Lang. Reference
12 camembert-base-xnli fr (Doy)

13 xlm-roberta-large-
xnli-finetuned-mnli multi (Ozs)

14 mDeBERTa-v3-
base-mnli-xnli multi (Laurer et al., 2022)

15 mDeBERTa-v3-base-xnli-
multilingual-nli-2mil7 multi (Laurer et al., 2022)

Table 9: Models used in Exp. 3

Given a negated matrix perception verb em-
bedding a clause C either as an infinitive or as a
(pseudo)relative, with or without cliticization of its
subject (2×2 design, see (11)), we measure how
likely LLMs are to infer the truth of C (“target
inference”, TI).

(11) Template for the stimuli of Exp. 3{
Il/Elle

}
ne

{
le/la/l’

∅

}{
voit/...

}
pas –

PRO NEG (CL) V NEG–{
∅

Marie/Jean

}
–

{
subject-gap relative

subject-gap infinitive

}
(N) – CP

(12) Example stimuli for Exp. 2
a. Il

He
ne
NEG

voit
sees

pas
NEG

Marie
Marie

qui
that

danse.
dances.

=⇒ Marie is dancing. TI ✓

b. Il
He

ne
NEG

la
CL

voit
sees

pas
NEG

qui
that

danse.
dances.

=⇒ She is dancing. TI ✓

c. Il
He

ne
NEG

voit
sees

pas
NEG

Marie
Marie

danser.
dancing.

̸=⇒ Marie is dancing. TI ✗

d. Il
He

ne
NEG

la
CL

voit
sees

pas
NEG

danser.
dancing.

̸=⇒ She is dancing. TI ✗

Sentence clitic? emb_clause
(12a) n relative
(12b) y relative
(12c) n infinitive
(12d) y infinitive

Table 10: Summary of the 2×2 design of Exp. 3

We expect the TI to be overall stronger when
the embedded clause is a relative as opposed to
an infinitive, whether of not the head noun is
cliticized. The effect of cliticization in the case
of a structure embedding a relative is a little bit



less clear: in the absence of cliticization the clause
is ambiguous between a PR and a RC, and it is
reasonable to think that both parses encourage a TI.
Assuming that the RC parse imposes a somewhat
stronger TI than a PR parse, then we might expect
sentences like (12b), which are unambiguously
PRs due to cliticization, to lead to a slightly weaker
TI than sentences like (12a) which allow a RC
parse. In other words, we expect non-cliticized
sentences embedding an RC to yield the strongest
TI.

Linear mixed-effect modeling reveals that em-
bedded relative constructions systematically lead
to a stronger target inference as opposed to infini-
tives (cf. Table 11 col. 3), which is consistent
with property (5), might be driven by the RC-parse
only. Non-cliticized subjects also lead to a stronger
target inference across the board (col. 4). This
is made particularly clear in Figure 3. This pat-
tern cannot be fully explained by the theory but
makes sense if we consider that non-cliticized con-
structions are way more frequent in the data (so
that LLMs may be more confident about the in-
ferences related to such constructions, as opposed
to cliticized ones). Finally, 2/4 models associate
non-cliticized RC-embedding constructions to a
stronger TI, which corresponds to the stipulation
discussed in the previous paragraph. This all sug-
gests that LLMs associate the target inference with
the occurrence of RCs, but not really PRs: other-
wise, cliticized relative constructions (unambigu-
ously PRs) would have lead to stronger target infer-
ences. Figure 3 in particular, shows that cliticized
constructions featuring an embedded relative (un-
ambiguously PRs), do not lead at all to a strong TI,
suggesting the RC-parse (and not the PR-parse), is
driving this inference.

ID best AIC? embedded
clause (RC) clitic RC/clitic

interaction
12 y ** (+) ** (-) ** (-)
13 y ** (+) ** (-) ** (+)
14 y ** (+) ** (-) ** (+)
15 y ** (+) ** (-) ** (-)

Table 11: Significance results of LME modeling
for target_inference_strength ∼ emb_clause +
clitic+ emb_clause ∗ clitic.

6 Discussion and outlook

In this work, we investigated a structure (the
pseudorelative) with two interesting distributional
properties: (1) it can be ambiguous with a relative

(a) CamemBERT (b) mDeBERTa

Figure 3: Distributions of the TI strength scores (/100)
for Exp. 3 and models 12 and 15.

clause when the head noun is not cliticized; (2)
the disambiguating (cliticized) structure is less
frequent in corpora by several orders of magnitude.
We think that the conjunction of these two
properties makes learning the specific syntactic
and semantic properties of PRs particularly
challenging, even for models trained on large
amount of data.

The experiments we run show that LLMs capture
certain properties of PRs, pertaining to acceptable
filler-gap dependencies, matrix verbs, and tense
combinations. Interestingly, 3/4 multilingual mod-
els exposed to both French (a PR-language) and En-
glish (devoid of PRs) in Exp. 1 managed to contrast
the two languages. Yet, the property that is perhaps
the most specific to pseudorelatives, cliticization,
does not seem to influence sentence probability
scores in Exp. 2, and inference patterns in Exp. 3.
This raises the question whether LLMs really get
the specificity of the pseudorelative as a syntactic
construction (Exp. 2) with a specific semantics
(Exp. 3); or whether they simply recycle general
processing heuristics applicable to other structures
(e.g. standard RCs). Such heuristics may involve a
preference for shorter dependencies (subject-gaps)
across the board; or learning a statistical correla-
tion between the use of perception verbs and the
agentive structure of the perceived event.
Future work may involve investigating other lan-
guages allowing the pseudorelative, but also refin-
ing the current design by looking at the influence
of the different perception verbs. We think this
might be particularly relevant given the rather large
frequency differences between these verbs in ac-
tual corpora (cf. Tables 1 and 2), and the potential
imbalance between ambiguous vs. unambiguous
PR-structures for each of those verbs.
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