Word-Embeddings Distinguish Denominal and Root-Derived Verbs in Semitic

Ido Benbaji ${ }^{1}$ Omri Doron ${ }^{1}$ Adèle Hénot-Mortier ${ }^{1}$
${ }^{1}$ Massachusetts Institute of Technology

August 16, 2022

Full disclaimer

- Thank you so much for having us!
- I (Adèle) am here to present this work. I am not a native speaker of Modern Hebrew, but my two co-authors, Omri and Ido, are. I will do my best to answer Hebrew-related questions!
- This talk will focus on the bridges between generative linguistics and machine learning. Not a lot of logical background...sorry in advance!
- We would like to thank Roger Levy from MIT Brain and Cognitive Sciences, who helped us develop this project as part of the Computational Psycholinguistics class.

Introduction: Hebrew morphology and the two-level model

A few basic principles of word formation

Morphology and semantic/phonological transparency

- Some but not all compounds have a compositional meaning: (huckle?-berry) vs black■-berry / blue■-berry [1].
- Some but not all English suffixes leave stress intact: glóbal \rightarrow glóbal-ness, but globál-ity.

A few basic principles of word formation

Morphology and semantic/phonological transparency

- Some but not all compounds have a compositional meaning: (huckle?-berry) vs black■-berry/blue \quad-berry [1]
- Some but not all English suffixes leave stress intact: glóbal \rightarrow glóbal-ness, but globál-ity.

The two-level model ([2], [3] a.o.)

- Morphological operations can be of two types...
- Level 1: idiosyncratic, non-compositional, below-word.
- Level 2: deterministic, compositional, above-word.

A few basic principles of word formation

Morphology and semantic/phonological transparency

- Some but not all compounds have a compositional meaning: (huckle?-berry) vs black■-berry\%/ blue \square-berry [1].
- Some but not all English suffixes leave stress intact: glóbal \rightarrow glóbal-ness, but globál-ity.

The two-level model ([2], [3] a.o.)

- Morphological operations can be of two types...
- Level 1: idiosyncratic, non-compositional, below-word.
- Level 2: deterministic, compositional, above-word.
- A word is created once a root $(\sqrt{ })$ is merged with a functional head: n (ominalizer), v (erbalizer), a(djectivizer) etc.
- The first head to be merged sets the rough semantic/phonological features of the newly created word.

Figure 1: Two-level morphology

Figure 1: Two-level morphology
Key semantic predictions of the two-level model
We focus on the semantic effects of word-formation (L1) and subsequent affixation (L2). Two key predictions:

Figure 1: Two-level morphology
Key semantic predictions of the two-level model
We focus on the semantic effects of word-formation (L1) and subsequent affixation (L2). Two key predictions:
(A) Words derived from the same root via L1 operations may arbitrarily differ semantically.

Figure 1: Two-level morphology
Key semantic predictions of the two-level model
We focus on the semantic effects of word-formation (L1) and subsequent affixation (L2). Two key predictions:
(A) Words derived from the same root via L1 operations may arbitrarily differ semantically.
(B) Words derived from the same base word via L2 operations should be closely related semantically.

Application to Semitic (templatic) morphology

A non-concatenative system

- In Modern Hebrew (MH), functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{ }$) consonants.

Application to Semitic (templatic) morphology

A non-concatenative system

- In Modern Hebrew (MH), functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{ }$) consonants.

An illustration of templatic morphology

- For instance, template taCCiC (=n-head) can combine with root $\sqrt{\mathrm{x} \int \mathrm{v}}$ to form the word (noun) tax $\int \mathrm{iv}$, 'calculation'.

Application to Semitic (templatic) morphology

A non-concatenative system

- In Modern Hebrew (MH), functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{ }$) consonants.

An illustration of templatic morphology

- For instance, template taCCiC (=n-head) can combine with root $\sqrt{\mathrm{x} \int \mathrm{v}}$ to form the word (noun) tax $\int \mathrm{iv}$, 'calculation'.
- In the above template, the t is called a templatic consonant.

Application to Semitic (templatic) morphology

A non-concatenative system

- In Modern Hebrew (MH), functional heads are instantiated by "templates".
- Templates are discontinuous sequences of phonemes (usually vowels), which are intended to be "filled" by root ($\sqrt{ }$) consonants.

An illustration of templatic morphology

- For instance, template taCCiC (=n-head) can combine with root $\sqrt{\mathrm{x} \int \mathrm{v}}$ to form the word (noun) tax \int iv, 'calculation'.
- In the above template, the t is called a templatic consonant.
- A root, applied to different templates, yields words with very different meanings: $\sqrt{\mathrm{x} \int \mathrm{v}}+\mathrm{CaCuC}=\mathrm{xa} \int \mathrm{uv}$, 'important', no obvious link with 'calculation'! In line with prediction A.

Case study: Hebrew denominal verbs

The 2-level model at work in Modern Hebrew

Hebrew denominal verbs

- Denominal verbs are derived from a noun. In other words, they result from the merger of a n-head (L1), followed by that of a v-head (L2).

The 2-level model at work in Modern Hebrew

Hebrew denominal verbs

- Denominal verbs are derived from a noun. In other words, they result from the merger of a n-head (L1), followed by that of a v-head (L2).
- It is not easy to tease apart denominals from "basic" verbs derived directly from a root in English corpora (but see [4]).

The 2-level model at work in Modern Hebrew

Hebrew denominal verbs

- Denominal verbs are derived from a noun. In other words, they result from the merger of a n-head (L1), followed by that of a v-head (L2).
- It is not easy to tease apart denominals from "basic" verbs derived directly from a root in English corpora (but see [4]).
- Hebrew comes with a clear diagnostic: templatic consonants! If a verb contains a consonant that (1) belongs to a known nominal template, and (2) does not belong to the original root; then the verb is probably denominal...

The 2-level model at work in Modern Hebrew

Hebrew denominal verbs

- Denominal verbs are derived from a noun. In other words, they result from the merger of a n-head (L1), followed by that of a v-head (L2).
- It is not easy to tease apart denominals from "basic" verbs derived directly from a root in English corpora (but see [4]).
- Hebrew comes with a clear diagnostic: templatic consonants! If a verb contains a consonant that (1) belongs to a known nominal template, and (2) does not belong to the original root; then the verb is probably denominal...

$$
\sqrt{\sqrt{x \int v}=\operatorname{maCCeC}(n)^{\max \int e v}} \begin{gathered}
\text { 'computer', }-\mathrm{CiCCeC}(v) \rightarrow \begin{array}{c}
\text { mixfev } \\
\mathrm{CiCCeC}(v) \\
\text { (denominal) }
\end{array} \\
\text { 'calculated' }
\end{gathered}
$$

Denominal vs root-derived verbs [5]

- Back to the predictions of the 2-level model...

Denominal vs root-derived verbs [5]

- Back to the predictions of the 2-level model...

A If a noun N and a verb V derive from the same root (via a L1 operation), we expect them to differ semantically in a somewhat arbitrary way.

Denominal vs root-derived verbs [5]

- Back to the predictions of the 2-level model...

A If a noun N and a verb V derive from the same root (via a L1 operation), we expect them to differ semantically in a somewhat arbitrary way.
B If a denominal D derives from a base noun N (via a L2 operation), we expect them to be close semantically.

Denominal vs root-derived verbs [5]

- Back to the predictions of the 2-level model...
(A) If a noun N and a verb V derive from the same root (via a L1 operation), we expect them to differ semantically in a somewhat arbitrary way.
(B) If a denominal D derives from a base noun N (via a L2 operation), we expect them to be close semantically.
- Thus, given a root $\sqrt{ }$, a noun N, a verb V, a denominal D, s.t. $\sqrt{L 1} N, \stackrel{L 1}{\longrightarrow} V$, and $N \xrightarrow{L 2} D$, we expect:

$$
\mathcal{S}(N, D)>\mathcal{S}(N, V)
$$

For some well-chosen semantic measure \mathcal{S} between pairs of words.

Denominal vs root-derived verbs [5]

- Back to the predictions of the 2-level model...

A If a noun N and a verb V derive from the same root (via a L1 operation), we expect them to differ semantically in a somewhat arbitrary way.
B If a denominal D derives from a base noun N (via a L2 operation), we expect them to be close semantically.

- Thus, given a root $\sqrt{ }$, a noun N, a verb V, a denominal D, s.t. $\sqrt{ } \xrightarrow{L 1} N, \sqrt{L 1} V$, and $N \xrightarrow{L 2} D$, we expect:

$$
\mathcal{S}(N, D)>\mathcal{S}(N, V)
$$

For some well-chosen semantic measure \mathcal{S} between pairs of words.Building on the previous example:

$$
\mathcal{S}\left(\max \int \mathrm{ev}_{N}, \operatorname{mix} \int \mathrm{ev}_{D}\right)>\mathcal{S}\left(\max \int \mathrm{ev}_{N},{\operatorname{xi} \int \mathrm{ev}_{V}}\right)
$$

Modeling the predictions within Hebrew word embedding models

Relevance of word embeddings to our task

- Word embeddings are high-dimensional vector representations of words, often learned as "byproducts" of ML-related tasks (word prediction, classification...) [6].

Relevance of word embeddings to our task

- Word embeddings are high-dimensional vector representations of words, often learned as "byproducts" of ML-related tasks (word prediction, classification...) [6].
- Past empirical evidence in favor of embeddings' encoding of semantic features and relationships [7].
- Embeddings come with a robust measure of semantic similarity, cosine similarity!

(a) Positive form \rightarrow comparative
\rightarrow superlative transformations [7]

(b) Masculine \leftrightarrow feminine transformations [7]

How does the 2-level model translate into a word embedding?

- Let us define Area($\sqrt{ })$ as the subspace (convex envelope?) of $\left\{\vec{X} \mid \checkmark \rightarrow{ }^{*} X\right\}$. The predictions of the 2-level model become:

[^0]How does the 2-level model translate into a word embedding?

- Let us define Area($\sqrt{ })$ as the subspace (convex envelope?) of $\left\{\vec{X} \mid \sqrt{ } \rightarrow{ }^{*} X\right\}$. The predictions of the 2-level model become:
(A) Given a root $\sqrt{ }$, and A, B, s.t. $\sqrt{L 1} A$, and $\sqrt{L 1} B$, we expect \vec{A} and \vec{B} to be randomly distributed across $\operatorname{Area}(\sqrt{ })$.

[^1]How does the 2-level model translate into a word embedding?

- Let us define Area($\sqrt{ })$ as the subspace (convex envelope?) of $\left\{\vec{X} \mid \checkmark \rightarrow{ }^{*} X\right\}$. The predictions of the 2-level model become:
A Given a root $\sqrt{ }$, and A, B, s.t. $\sqrt{L 1} A$, and $\sqrt{L 1} B$, we expect \vec{A} and \vec{B} to be randomly distributed across $\operatorname{Area}(\sqrt{ })$.
(B) Given $\sqrt{ }, A$ and B, s.t. $\sqrt{L 1} A \xrightarrow{L 2} B$, we expect \vec{A} and \vec{B} to be very close to each other within $\operatorname{Area}(\sqrt{ })$.

[^2]
How does the 2-level model translate into a word embedding?

- Let us define Area($\sqrt{ })$ as the subspace (convex envelope?) of $\left\{\vec{X} \mid \sqrt{ } \rightarrow{ }^{*} X\right\}$. The predictions of the 2-level model become:
© Given a root $\sqrt{ }$, and A, B, s.t. $\sqrt{L 1} A$, and $\sqrt{L 1} B$, we expect \vec{A} and \vec{B} to be randomly distributed across $\operatorname{Area}(\sqrt{ })$.
(B) Given $\sqrt{ }, A$ and B, s.t. $\sqrt{ } \xrightarrow{L 1} A \xrightarrow{L 2} B$, we expect \vec{A} and \vec{B} to be very close to each other within $\operatorname{Area}(\sqrt{ })$.
- Let $\sqrt{ }, N, D,\left(V_{i}\right)_{i \in[1, K]}$, be s.t. $\sqrt{ } \xrightarrow{L 1} N, \forall i \in[1, K] \sqrt{ } \xrightarrow{L 1} V_{i}$, and $N \xrightarrow{L 2} D$. We predict:
$\operatorname{Cos} \operatorname{Sim}(\vec{N}, \vec{D})>\max _{i} \operatorname{Cos} \operatorname{Sim}\left(\vec{N}, \vec{V}_{i}\right) \quad\left(\right.$ Stronger Hypothesis $\left.{ }^{1}\right)$
$\operatorname{Cos} \operatorname{Sim}(\vec{N}, \vec{D})>\frac{1}{K} \sum_{i=1}^{K} \operatorname{Cos} \operatorname{Sim}\left(\vec{N}, \vec{V}_{i}\right) \quad$ (Weaker Hypothesis)

[^3]Testing the predictions within Hebrew word embedding models

Testing strategy

- Generate a dataset of $n\left(N,\left(V_{i}\right)_{i \in[1, K]}, D\right)$ triplets.

Testing strategy

- Generate a dataset of $n\left(N,\left(V_{i}\right)_{i \in[1, K]}, D\right)$ triplets.
- Embed and reduce the dimensionality of the data to get vectors that are as meaningful and noiseless as possible.

Testing strategy

- Generate a dataset of $n\left(N,\left(V_{i}\right)_{i \in[1, K]}, D\right)$ triplets.
- Embed and reduce the dimensionality of the data to get vectors that are as meaningful and noiseless as possible.
- Compute $\operatorname{CosSim}(\vec{N}, \vec{D})$ and $\max _{i} \operatorname{CosSim}\left(\vec{N}, \vec{V}_{i}\right) /$ $\frac{1}{K} \sum_{i=1}^{K} \operatorname{Cos} \operatorname{Sim}\left(\vec{N}, \vec{V}_{i}\right)$, for each triplet, to get a list of n pairs of scores.

Testing strategy

- Generate a dataset of $n\left(N,\left(V_{i}\right)_{i \in[1, K]}, D\right)$ triplets.
- Embed and reduce the dimensionality of the data to get vectors that are as meaningful and noiseless as possible.
- Compute $\operatorname{CosSim}(\vec{N}, \vec{D})$ and $\max _{i} \operatorname{CosSim}\left(\vec{N}, \vec{V}_{i}\right) /$ $\frac{1}{K} \sum_{i=1}^{K} \operatorname{Cos} \operatorname{Sim}\left(\vec{N}, \vec{V}_{i}\right)$, for each triplet, to get a list of n pairs of scores.
- Perform a one-tailed Wilcoxon test for matched-pairs on the data, and compute the relevant effect sizes.

Data generation procedure

- Elaborate a list of nominal templates with templatic consonants, and match those templates against nouns extracted from the PoS-tagged Knesset Meetings Corpus, to obtain a list of nouns with templatic consonants.

[^4]
Data generation procedure

- Elaborate a list of nominal templates with templatic consonants, and match those templates against nouns extracted from the PoS-tagged Knesset Meetings Corpus, to obtain a list of nouns with templatic consonants.
- For each noun N of this list:
- Extract its root (easy because we know its template!), and generate candidate root-derived verbs $\left(V_{i}\right)_{i \in[1, K]}$ using the verbal templates from Table 1 (next slide).

[^5]
Data generation procedure

- Elaborate a list of nominal templates with templatic consonants, and match those templates against nouns extracted from the PoS-tagged Knesset Meetings Corpus, to obtain a list of nouns with templatic consonants.
- For each noun N of this list:
- Extract its root (easy because we know its template!), and generate candidate root-derived verbs $\left(V_{i}\right)_{i \in[1, K]}$ using the verbal templates from Table 1 (next slide).
- From the noun itself, generate candidate denominal verbs ${ }^{2}$ using the template mapping in Table 3 (next slide).

[^6]
Data generation procedure

- Elaborate a list of nominal templates with templatic consonants, and match those templates against nouns extracted from the PoS-tagged Knesset Meetings Corpus, to obtain a list of nouns with templatic consonants.
- For each noun N of this list:
- Extract its root (easy because we know its template!), and generate candidate root-derived verbs $\left(V_{i}\right)_{i \in[1, K]}$ using the verbal templates from Table 1 (next slide).
- From the noun itself, generate candidate denominal verbs ${ }^{2}$ using the template mapping in Table 3 (next slide).
- Match the candidate forms (and any inflected variant thereof) against the corpus to filter unattested elements.
- Manually inspect the remaining candidates.

[^7]| Verbal templates |
| :---: |
| CaCaC |
| niCCaC |
| CiCCeC |
| CuCCaC |
| hiCCiC |
| huCCaC |
| hitCaCCeC |

Table 1: Verbal templates susceptible to apply at the root level

Step	\# data points
Generation from templates	$\mathbf{1 4 3 5}$
Filtering via corpus	$1435-1322$ $=113$
Manual inspection	$113-47$ $=66$

Table 2: Number of data points at each step of the generation

Nominal template	Denominal template(s)
tiCCoCet tiCCoCa taCCiC	letaCCeC
CeCCon	leCaCCen lehitCaCCen
$\begin{gathered} \text { maCCeC } \\ \text { miCCeCet } \\ \text { miCCaC } \end{gathered}$	lemaCCeC lehitmaCCeC
šaCCeCet	$\begin{gathered} \text { lešaCCeC } \\ \text { lehištaCCeC } \end{gathered}$
CaCaCat	$\begin{gathered} \text { leCaCCet } \\ \text { lehitCaCCet } \end{gathered}$

Table 3: Correspondence between nominal templates involving templatic consonants and the denominal (verbal) template that can apply on top of them

Preparation of the word embeddings

- 4 models: Word2Vec [8], GloVe [7], fastText [9], BERT [10]:
- fastText [11] and BERT (AlephBERT, [12]) were pretrained. ${ }^{3}$
- Word2Vec and GloVe were trained on Hebrew Wikipedia dumps. GloVe was trained with two initial dimensions: 50 and 100.

[^8]
Preparation of the word embeddings

- 4 models: Word2Vec [8], GloVe [7], fastText [9], BERT [10]:
- fastText [11] and BERT (AlephBERT, [12]) were pretrained. ${ }^{3}$
- Word2Vec and GloVe were trained on Hebrew Wikipedia dumps. GloVe was trained with two initial dimensions: 50 and 100.
- Dimension reduction was performed on the data using PCA along with the Guttman-Kaiser criterion [13] to determine the optimal reduced dimension.

Model	Word2Vec	GloVe	fastText	BERT
\# vectors	584160	584162	2 billion	NA
Initial dimension	100	$50 / 100$	300	768
PCA-reduced dimension	27	$28 / 46$	50	107

Table 4: Characteristics of the models

[^9]
(a) Noun: 'pawning'; Denominal: 'to pawn'

(c) Noun: 'annoyed'; Denominals: 'to get annoyed', 'to annoy'

(b) Noun: 'frame'; Denominal: 'to frame'

(d) Noun: 'communication'; Denominal: 'to communicate'

Figure 3: 2D-reduction of a few data points (PCA, cosine kernel, fastText)

Results

- Weaker hypothesis $\left(\operatorname{CosSim}(\vec{N}, \vec{D}) / \frac{1}{K} \sum_{i=1}^{K} \operatorname{CosSim}\left(\vec{N}, \vec{V}_{i}\right)\right)$:
- All Wilcoxon tests appear significant.
- Large effect sizes, except for BERT.
- Stronger hypothesis $\left(\operatorname{Cos} \operatorname{Sim}(\vec{N}, \vec{D}) / \max _{i} \operatorname{Cos} \operatorname{Sim}\left(\vec{N}, \vec{V}_{i}\right)\right)$:
- All Wilcoxon tests but two ($\mathrm{GloVe}_{50}, \mathrm{BERT}$) are significant.
- Large effect sizes on the significant results, except on GloVe_{100}.

	Word2Vec	GloVe $_{50}$	GloVe $_{100}$	fastText	AlephBERT
\# data points	31	31	31	53	66
Weak hyp.	1.06×10^{-6}	2.43×10^{-4}	6.64×10^{-5}	1.42×10^{-10}	4.84×10^{-4}
(mean)	$0.86($ Large $)$	$0.52($ Large $)$	0.66 (Large)	$0.79($ Large $)$	$0.30($ Small $)$
Strong hyp.	3.77×10^{-5}	1.68×10^{-1}	2.87×10^{-2}	1.39×10^{-8}	3.59×10^{-1}
(max)	$0.66($ Large $)$	0.06 (Negligible)	$0.20($ Small $)$	0.62 (Large)	0.02 (Negligible)

Table 5: p-values and effect sizes (Cliff's Δ) for the weak and strong hypotheses and 4 embedding models

Conclusion

- Weak hypothesis verified on all models, robust prediction!

Conclusion

- Weak hypothesis verified on all models, robust prediction!
- What is going on with GloVe_{50} and BERT and the stronger hypothesis?

Conclusion

- Weak hypothesis verified on all models, robust prediction!
- What is going on with GloVe_{50} and BERT and the stronger hypothesis?
- First, recall that the stronger hypothesis was "noisier" because it could be accidentally violated for some triplets, due to the arbitrariness of L1 operations.

Conclusion

- Weak hypothesis verified on all models, robust prediction!
- What is going on with GloVe_{50} and BERT and the stronger hypothesis?
- First, recall that the stronger hypothesis was "noisier" because it could be accidentally violated for some triplets, due to the arbitrariness of L1 operations.
- GloVe 50 may have been too impoverished from the beginning (low dimensionality during training)... this explains why GloVe $_{100}$ manages to reach significance.

Conclusion

- Weak hypothesis verified on all models, robust prediction!
- What is going on with GloVe_{50} and BERT and the stronger hypothesis?
- First, recall that the stronger hypothesis was "noisier" because it could be accidentally violated for some triplets, due to the arbitrariness of L1 operations.
- GloVe 50 may have been too impoverished from the beginning (low dimensionality during training)... this explains why GloVe_{100} manages to reach significance.
- But then, how about BERT, which had the highest initial dimensionality? BERT may have performed poorly because it was not used at its full potential (i.e. with context words)!

Caveats, future work, new issues

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!

Caveats, future work, new issues

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- This certainly adds significant noise to the word vectors produced by static embeddings - even though it is unclear how this noise influences our hypotheses.

Caveats, future work, new issues

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- This certainly adds significant noise to the word vectors produced by static embeddings - even though it is unclear how this noise influences our hypotheses.
- We tried to control for this by using maximally unambiguous forms (e.g. by adding plural inflections). There are however two obvious alternatives to this "trick":

Caveats, future work, new issues

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- This certainly adds significant noise to the word vectors produced by static embeddings - even though it is unclear how this noise influences our hypotheses.
- We tried to control for this by using maximally unambiguous forms (e.g. by adding plural inflections). There are however two obvious alternatives to this "trick":
- Use contextual word embeddings properly. But this relocates the issue in the choice of a "suitable" context for each target word (subjective task!). This moreover requires to deal with varying (uncontrolled!) argument structures.

Caveats, future work, new issues

- Written Hebrew, being usually devoid of vowels, is characterized by a high degree of ambiguity!
- This certainly adds significant noise to the word vectors produced by static embeddings - even though it is unclear how this noise influences our hypotheses.
- We tried to control for this by using maximally unambiguous forms (e.g. by adding plural inflections). There are however two obvious alternatives to this "trick":
- Use contextual word embeddings properly. But this relocates the issue in the choice of a "suitable" context for each target word (subjective task!). This moreover requires to deal with varying (uncontrolled!) argument structures.
- Train models on textual data including vowels markings (called niqqud). This would probably involve niqqud-izing existing datasets... with ML! Again, this solution only moves the problem (disambiguation) elsewhere in the pipeline.

Thank you!

Selected references I

\square M. Aronoff, Word Formation in Generative Grammar, ser. Linguistic Inquiry monographs. MIT press, 1976, ISBN: 9780262510172.
M. Halle and A. Marantz, "Distributed morphology and the pieces of inflection," in The View from Building 20, Cambridge, MA: MIT Press, 1993, pp. 111-176.
A. Marantz, "Roots: The universality of root and pattern morphology," in conference on Afro-Asiatic languages, University of Paris VII, vol. 3, 2000, p. 14 .

- P. Kiparsky, "Remarks on denominal verbs," in Argument Structure, A. Alsina, J. Bresnan, and P. Sells, Eds., Stanford: CLSI, 1997, pp. 473-499.
M. Arad, "Locality constraints on the interpretation of roots: The case of hebrew denominal verbs," Natural Language and Linguistic Theory, vol. 21, no. 4, pp. 737-778, Nov. 2003. DOI: 10.1023/a:1025533719905. [Online]. Available: https://doi.org/10.1023/a:1025533719905.
D. Jurafsky and J. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, ser. Prentice Hall series in artificial intelligence. Pearson Prentice Hall, 2000, ISBN: 9780131873216.

Selected references II

J. Pennington, R. Socher, and C. Manning, "GloVe: Global vectors for word representation," in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1532-1543. Doi:
10.3115/v1/D14-1162. [Online]. Available: https://aclanthology.org/D14-1162.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," in 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2013. Doi: 10.48550/arXiv.1301.3781. [Online]. Available: http://arxiv.org/abs/1301.3781.
P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, "Enriching word vectors with subword information," arXiv preprint arXiv:1607.04606, 2016. Dor:
$10.48550 /$ arXiv.1607.04606. [Online]. Available:
https://arxiv.org/abs/1607.04606.

Selected references III

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: pre-training of deep bidirectional transformers for language understanding," CoRR, vol. abs/1810.04805, 2018. Doi: 10.48550/arXiv.1810.04805. arXiv: 1810.04805.
E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, "Learning word vectors for 157 languages," CoRR, vol. abs/1802.06893, 2018. DOi: $10.48550 / a r X i v .1802 .06893$. arXiv: 1802.06893.
A. Seker, E. Bandel, D. Bareket, I. Brusilovsky, R. S. Greenfeld, and R. Tsarfaty, "Alephbert: A hebrew large pre-trained language model to start-off your hebrew NLP application with," CoRR, vol. abs/2104.04052, 2021. DOI: $10.48550 / a r X i v .2104 .04052$. arXiv: 2104.04052.
L. Guttman, "Some necessary conditions for common-factor analysis," Psychometrika, vol. 19, no. 2, pp. 149-161, Jun. 1954. Doi:
10.1007/bf02289162. [Online]. Available:
https://doi.org/10.1007/bf02289162.

[^0]: ${ }^{1}$ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_{i} may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of L1 operations. This motivates the use of the weaker hypothesis.

[^1]: ${ }^{1}$ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_{i} may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of L1 operations. This motivates the use of the weaker hypothesis.

[^2]: ${ }^{1}$ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_{i} may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of L1 operations. This motivates the use of the weaker hypothesis.

[^3]: ${ }^{1}$ The stronger hypothesis is not expected to hold all the time, because the closest \vec{V}_{i} may accidentally end up closer to \vec{N} than \vec{D} is, due to the arbitrariness of L1 operations. This motivates the use of the weaker hypothesis.

[^4]: ${ }^{2}$ Note that one given noun can in practice give rise to several denominal forms, because certain nominal templates are compatible with more than one denominal template, see e.g. row 2 of Table 3.

[^5]: ${ }^{2}$ Note that one given noun can in practice give rise to several denominal forms, because certain nominal templates are compatible with more than one denominal template, see e.g. row 2 of Table 3.

[^6]: ${ }^{2}$ Note that one given noun can in practice give rise to several denominal forms, because certain nominal templates are compatible with more than one denominal template, see e.g. row 2 of Table 3.

[^7]: ${ }^{2}$ Note that one given noun can in practice give rise to several denominal forms, because certain nominal templates are compatible with more than one denominal template, see e.g. row 2 of Table 3.

[^8]: ${ }^{3}$ To get embeddings in the BERT model, we chose to sum the last 4 layers obtained after a forward pass performed on a single tokenized input (word). No context was provided.

[^9]: ${ }^{3}$ To get embeddings in the BERT model, we chose to sum the last 4 layers obtained after a forward pass performed on a single tokenized input (word). No context was provided.

