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Full disclaimer
Thank you so much for having us!
I (Adèle) am here to present this work. I am not a native
speaker of Modern Hebrew, but my two co-authors, Omri and
Ido, are. I will do my best to answer Hebrew-related questions!
This talk will focus on the bridges between generative
linguistics and machine learning. Not a lot of logical
background...sorry in advance!
We would like to thank Roger Levy from MIT Brain and
Cognitive Sciences, who helped us develop this project as part
of the Computational Psycholinguistics class.
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Introduction: Hebrew
morphology and the two-level

model
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A few basic principles of word formation

Morphology and semantic/phonological transparency
Some but not all compounds have a compositional meaning:
(huckle?-berry)Raspberry-Pi vs black�-berryRaspberry-Pi/blue�-berryRaspberry-Pi [1].
Some but not all English suffixes leave stress intact: glóbal →
glóbal-ness, but globál-ity.

The two-level model ([2], [3] a.o.)
Morphological operations can be of two types...

Level 1: idiosyncratic, non-compositional, below-word.
Level 2: deterministic, compositional, above-word.

A word is created once a root (√ ) is merged with a
functional head: n(ominalizer), v(erbalizer), a(djectivizer) etc.
The first head to be merged sets the rough
semantic/phonological features of the newly created word.
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· · · · · ·

√ · · ·

n, a, v

word is created here!

“lower” level (L1)

“upper” level (L2)

Figure 1: Two-level morphology

Key semantic predictions of the two-level model
We focus on the semantic effects of word-formation (L1) and
subsequent affixation (L2). Two key predictions:

A Words derived from the same root via L1 operations
may arbitrarily differ semantically.

B Words derived from the same base word via L2
operations should be closely related semantically.
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Application to Semitic (templatic) morphology

A non-concatenative system
In Modern Hebrew (MH), functional heads are
instantiated by “templates”.
Templates are discontinuous sequences of phonemes (usually
vowels), which are intended to be “filled” by root (√ )
consonants.

An illustration of templatic morphology
For instance, template taCCiC (=n-head) can combine with
root

√
xSv to form the word (noun) taxSiv, ‘calculation’.

In the above template, the t is called a templatic consonant.
A root, applied to different templates, yields words with very
different meanings:

√
xSv+CaCuC=xaSuv, ‘important’, no

obvious link with ‘calculation’! In line with prediction A.
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Case study: Hebrew denominal
verbs
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The 2-level model at work in Modern Hebrew

Hebrew denominal verbs
Denominal verbs are derived from a noun. In other words,
they result from the merger of a n-head (L1), followed by that
of a v-head (L2).

It is not easy to tease apart denominals from “basic” verbs
derived directly from a root in English corpora (but see [4]).
Hebrew comes with a clear diagnostic: templatic
consonants! If a verb contains a consonant that (1) belongs
to a known nominal template, and (2) does not belong to the
original root; then the verb is probably denominal...

√
xSv

maxSev
‘computer’

mixSev
‘computerized’
(denominal)

xiSev
‘calculated’

maCCeC (n)
CiCCeC (v)

CiCCeC (v)
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Denominal vs root-derived verbs [5]
Back to the predictions of the 2-level model...

A If a noun N and a verb V derive from the same root (via a L1
operation), we expect them to differ semantically in a
somewhat arbitrary way.

B If a denominal D derives from a base noun N (via a L2
operation), we expect them to be close semantically.

Thus, given a root √ , a noun N, a verb V , a denominal D,
s.t. √ L1→ N, √ L1→ V , and N L2→ D, we expect:

S(N, D) > S(N, V )

For some well-chosen semantic measure S between pairs of
words.Building on the previous example:

S(maxSevN , mixSevD) > S(maxSevN , xiSevV )
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Modeling the predictions within
Hebrew word embedding

models
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Relevance of word embeddings to our task
Word embeddings are high-dimensional vector representations
of words, often learned as “byproducts” of ML-related tasks
(word prediction, classification...) [6].

Past empirical evidence in favor of embeddings’
encoding of semantic features and relationships [7].
Embeddings come with a robust measure of semantic
similarity, cosine similarity!

(a) Positive form → comparative
→ superlative transformations [7]

(b) Masculine ↔ feminine
transformations [7]
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How does the 2-level model translate into a word embedding?
Let us define Area(√ ) as the subspace (convex envelope?) of
{
−→X |√ →∗ X}. The predictions of the 2-level model become:

A Given a root √ , and A, B, s.t. √ L1→ A, and √ L1→ B, we expect−→A and −→B to be randomly distributed across Area(√ ).
B Given √ , A and B, s.t. √ L1→ A L2→ B, we expect −→A and −→B to

be very close to each other within Area(√ ).

Let √ , N, D, (Vi)i∈[1,K ], be s.t. √ L1→ N, ∀i ∈ [1, K ] √ L1→ Vi ,
and N L2→ D. We predict:

CosSim(
−→
N ,

−→
D ) > maxiCosSim(

−→
N ,

−→
Vi ) (Stronger Hypothesis1)

CosSim(
−→
N ,

−→
D ) >

1
K

K∑
i=1

CosSim(
−→
N ,

−→
Vi ) (Weaker Hypothesis)

1The stronger hypothesis is not expected to hold all the time, because the closest
−→
Vi may accidentally end up

closer to
−→
N than

−→
D is, due to the arbitrariness of L1 operations. This motivates the use of the weaker hypothesis.
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Testing the predictions within
Hebrew word embedding

models
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Testing strategy
Generate a dataset of n (N, (Vi)i∈[1,K ], D) triplets.

Embed and reduce the dimensionality of the data to get
vectors that are as meaningful and noiseless as possible.
Compute CosSim(

−→
N ,

−→
D ) and maxiCosSim(

−→
N ,

−→
Vi ) /

1
K

∑K
i=1 CosSim(

−→
N ,

−→
Vi ), for each triplet, to get a list of n

pairs of scores.
Perform a one-tailed Wilcoxon test for matched-pairs on the
data, and compute the relevant effect sizes.
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Data generation procedure
Elaborate a list of nominal templates with templatic
consonants, and match those templates against nouns
extracted from the PoS-tagged Knesset Meetings Corpus, to
obtain a list of nouns with templatic consonants.

For each noun N of this list:
Extract its root (easy because we know its template!), and
generate candidate root-derived verbs (Vi)i∈[1,K ] using the
verbal templates from Table 1 (next slide).
From the noun itself, generate candidate denominal
verbs2using the template mapping in Table 3 (next slide).

Match the candidate forms (and any inflected variant thereof)
against the corpus to filter unattested elements.
Manually inspect the remaining candidates.

2Note that one given noun can in practice give rise to several denominal forms, because certain nominal
templates are compatible with more than one denominal template, see e.g. row 2 of Table 3.
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against the corpus to filter unattested elements.
Manually inspect the remaining candidates.

2Note that one given noun can in practice give rise to several denominal forms, because certain nominal
templates are compatible with more than one denominal template, see e.g. row 2 of Table 3.
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Verbal templates
CaCaC
niCCaC
CiCCeC
CuCCaC
hiCCiC
huCCaC

hitCaCCeC

Table 1: Verbal templates
susceptible to apply at the root level

Step # data points
Generation
from templates 1435

Filtering
via corpus

1435-1322
= 113

Manual
inspection

113-47
= 66

Table 2: Number of data points at
each step of the generation

procedure

Nominal
template

Denominal
template(s)

tiCCoCet
tiCCoCa letaCCeC
taCCiC

CeCCon leCaCCen
lehitCaCCen

maCCeC

miCCeCet lemaCCeC
lehitmaCCeC

miCCaC

šaCCeCet lešaCCeC
lehištaCCeC

CaCaCat leCaCCet
lehitCaCCet

Table 3: Correspondence between
nominal templates involving templatic
consonants and the denominal (verbal)

template that can apply on top of
them
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Preparation of the word embeddings
4 models: Word2Vec [8], GloVe [7], fastText [9], BERT [10]:

fastText [11] and BERT (AlephBERT, [12]) were pretrained.3
Word2Vec and GloVe were trained on Hebrew Wikipedia
dumps. GloVe was trained with two initial dimensions: 50 and
100.

Dimension reduction was performed on the data using PCA
along with the Guttman-Kaiser criterion [13] to determine the
optimal reduced dimension.

Model Word2Vec GloVe fastText BERT
# vectors 584 160 584 162 2 billion NA

Initial
dimension 100 50/100 300 768

PCA-reduced
dimension 27 28/46 50 107

Table 4: Characteristics of the models

3To get embeddings in the BERT model, we chose to sum the last 4 layers obtained after a forward pass
performed on a single tokenized input (word). No context was provided.
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(a) Noun: ‘pawning’;
Denominal: ‘to pawn’

(b) Noun: ‘frame’;
Denominal: ‘to frame’

(c) Noun: ‘annoyed’; Denominals:
‘to get annoyed’, ‘to annoy’

(d) Noun: ‘communication’;
Denominal: ‘to communicate’

Figure 3: 2D-reduction of a few data points (PCA, cosine kernel, fastText)
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Results
Weaker hypothesis (CosSim(−→N ,

−→D )/ 1
K

∑K
i=1 CosSim(−→N ,

−→Vi )):
All Wilcoxon tests appear significant.
Large effect sizes, except for BERT.

Stronger hypothesis (CosSim(−→N ,
−→D )/maxiCosSim(−→N ,

−→Vi )):
All Wilcoxon tests but two (GloVe50, BERT) are significant.
Large effect sizes on the significant results, except on GloVe100.

Word2Vec GloVe50 GloVe100 fastText AlephBERT
# data points 31 31 31 53 66

Weak hyp.
(mean)

1.06 × 10−6

0.86 (Large)
2.43 × 10−4

0.52 (Large)
6.64 × 10−5

0.66 (Large)
1.42 × 10−10

0.79 (Large)
4.84 × 10−4

0.30 (Small)
Strong hyp.

(max)
3.77 × 10−5

0.66 (Large)
1.68 × 10−1

0.06 (Negligible)
2.87 × 10−2

0.20 (Small)
1.39 × 10−8

0.62 (Large)
3.59 × 10−1

0.02 (Negligible)

Table 5: p-values and effect sizes (Cliff’s ∆) for the weak and strong
hypotheses and 4 embedding models
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Conclusion
Weak hypothesis verified on all models, robust prediction!

What is going on with GloVe50 and BERT and the stronger
hypothesis?

First, recall that the stronger hypothesis was “noisier” because
it could be accidentally violated for some triplets, due to the
arbitrariness of L1 operations.
GloVe50 may have been too impoverished from the beginning
(low dimensionality during training)... this explains why
GloVe100 manages to reach significance.
But then, how about BERT, which had the highest initial
dimensionality? BERT may have performed poorly
because it was not used at its full potential (i.e. with
context words)!



Intro Case study Modeling Testing Conclusion and discussion References

Conclusion
Weak hypothesis verified on all models, robust prediction!
What is going on with GloVe50 and BERT and the stronger
hypothesis?

First, recall that the stronger hypothesis was “noisier” because
it could be accidentally violated for some triplets, due to the
arbitrariness of L1 operations.
GloVe50 may have been too impoverished from the beginning
(low dimensionality during training)... this explains why
GloVe100 manages to reach significance.
But then, how about BERT, which had the highest initial
dimensionality? BERT may have performed poorly
because it was not used at its full potential (i.e. with
context words)!



Intro Case study Modeling Testing Conclusion and discussion References

Conclusion
Weak hypothesis verified on all models, robust prediction!
What is going on with GloVe50 and BERT and the stronger
hypothesis?

First, recall that the stronger hypothesis was “noisier” because
it could be accidentally violated for some triplets, due to the
arbitrariness of L1 operations.

GloVe50 may have been too impoverished from the beginning
(low dimensionality during training)... this explains why
GloVe100 manages to reach significance.
But then, how about BERT, which had the highest initial
dimensionality? BERT may have performed poorly
because it was not used at its full potential (i.e. with
context words)!



Intro Case study Modeling Testing Conclusion and discussion References

Conclusion
Weak hypothesis verified on all models, robust prediction!
What is going on with GloVe50 and BERT and the stronger
hypothesis?

First, recall that the stronger hypothesis was “noisier” because
it could be accidentally violated for some triplets, due to the
arbitrariness of L1 operations.
GloVe50 may have been too impoverished from the beginning
(low dimensionality during training)... this explains why
GloVe100 manages to reach significance.

But then, how about BERT, which had the highest initial
dimensionality? BERT may have performed poorly
because it was not used at its full potential (i.e. with
context words)!



Intro Case study Modeling Testing Conclusion and discussion References

Conclusion
Weak hypothesis verified on all models, robust prediction!
What is going on with GloVe50 and BERT and the stronger
hypothesis?

First, recall that the stronger hypothesis was “noisier” because
it could be accidentally violated for some triplets, due to the
arbitrariness of L1 operations.
GloVe50 may have been too impoverished from the beginning
(low dimensionality during training)... this explains why
GloVe100 manages to reach significance.
But then, how about BERT, which had the highest initial
dimensionality? BERT may have performed poorly
because it was not used at its full potential (i.e. with
context words)!



Intro Case study Modeling Testing Conclusion and discussion References

Caveats, future work, new issues
Written Hebrew, being usually devoid of vowels, is
characterized by a high degree of ambiguity!

This certainly adds significant noise to the word vectors
produced by static embeddings – even though it is unclear
how this noise influences our hypotheses.
We tried to control for this by using maximally unambiguous
forms (e.g. by adding plural inflections). There are however
two obvious alternatives to this “trick”:

Use contextual word embeddings properly. But this
relocates the issue in the choice of a “suitable” context for
each target word (subjective task!). This moreover requires to
deal with varying (uncontrolled!) argument structures.
Train models on textual data including vowels markings
(called niqqud). This would probably involve niqqud-izing
existing datasets... with ML! Again, this solution only moves
the problem (disambiguation) elsewhere in the pipeline.
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Thank you!
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