Evidence for an encoding of morphological blocking effects within two English word embedding models

Background on morphological blocking

- Blocking is a process by which the existence of a word in the mental lexicon prevents regular affixation, if it would give rise to a complex word with the same meaning [1].
- In English, -*ity* and -*ness* affixation can apply to the same base: monstros-ity, monstrous-ness.
- ***** Yet, only *-ity* affixation is subject to blocking: *glory* blocks **glorios-ity* but not *glorious-ness* [1]. Why?
 - Supposedly, -ity and -ness do not operate at the same "level": -ity is L1 ("word-creating") while *-ness* is L2 ("word-modifying").
 - This division also has phonological manifestations: -*ity* shifts stress $(gl \acute{o} bal \rightarrow glob \acute{a} l - ity)$, while -ness does not $(gl \acute{o} bal - ness)$.
 - L1 -derived words may compete with suppletive forms from the lexicon, while **L2** -derived words may not.

Modeling of the problem

- We define \mathcal{B}_{-ity} , \mathcal{B}_{-ness} and $\mathcal{B}_{sup.}$ as the sets of base forms in *-ous* compatible with resp. *-ity*, *-ness*, and a **suppletive transformation** of the form *glorious* \mapsto *glory*.
- ∠ For instance, monstrous $\in \mathcal{B}_{-ity} \cap \mathcal{B}_{-ness}$, and glorious \in $\mathcal{B}_{-ness} \cap \mathcal{B}_{sup.}$, but also glorious $\notin \mathcal{B}_{-itv}$

For a base $b \in \mathcal{B}_{-ity} \cup \mathcal{B}_{-ness}$ we define the suffixal vector(s):

$$\overrightarrow{-ity}_{b} = \overrightarrow{b-ity} - \overrightarrow{b} \qquad \text{if } b \text{ in } \mathcal{B}_{-ity}$$
$$\overrightarrow{-ness}_{b} = \overrightarrow{b-ness} - \overrightarrow{b} \qquad \text{if } b \text{ in } \mathcal{B}_{-ness}$$

- For a base $b \in \mathcal{B}_{sup}$. (e.g., *glorious*) we have a suppletive form *s_h* (e.g., *glory*). We then define the suppletive vector:
- **But this does not explain why** *-ity* **is L1 and** *-ness* L2 !

Contribution

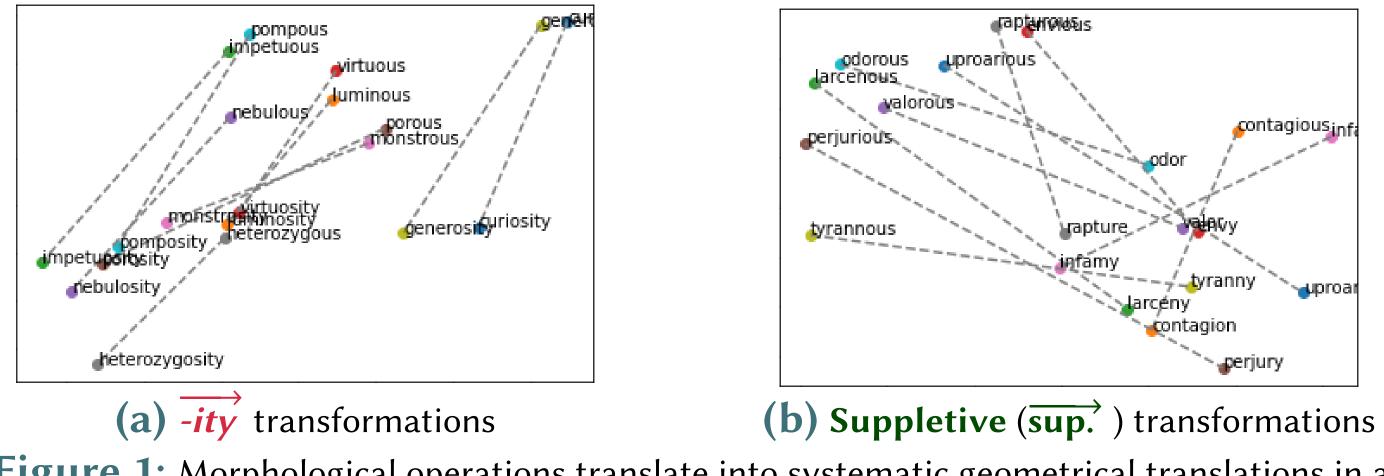
- We show that two recent word embedding models (GloVe [4] and fastText [2])...
 - Distinguish between L1 and L2 operations
 - Encode a stronger similarity between **suppletive operations** (such as glorious \mapsto glory) and L1 operations, as opposed to L2.
- We therefore argue that embeddings encode some notion of semantic competition between L1 vs suppletive operations, rather than L2 vs suppletive operations.
- This semantic competition might then drive blocking effects.

Relevance of word embedding models

> Word embeddings are representations of words as vectors encoding their meanings, s.t. the words that are close in the vector space (in terms of cosine similarity) are semantically

$$\overrightarrow{sup}_b = \overrightarrow{s_b} - \overrightarrow{b}$$

For each possible label X := -ity, -ness or sup., we define the set of transformation vectors (suffixal or suppletive), and a measure of similarity between such sets:


 $\mathcal{V}_{\overrightarrow{X}} = \{ \overrightarrow{X}_b \mid b \in \mathcal{B}_X \}$ $\mathcal{S}(X, Y) = Mean(\{CosSim(\vec{x}, \vec{y}) \mid (\vec{x}, \vec{y}) \in \mathcal{V}_{\overrightarrow{x}} \times \mathcal{V}_{\overrightarrow{y}}\})$ $S(X, X) \triangleq S(X)$: Intra-group similarity $S(X, Y), X \neq Y$: Inter-group similarity

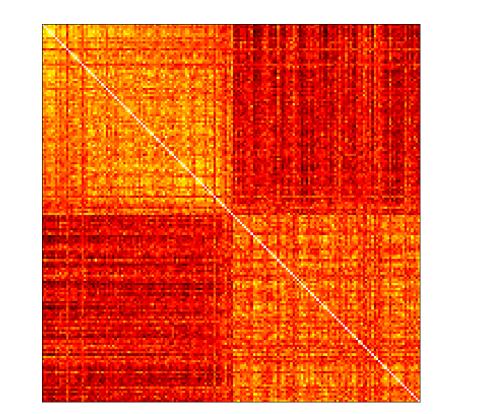
Hypotheses and testing

 $H_1: \mathcal{V}_{\xrightarrow{-itv}}, \mathcal{V}_{\xrightarrow{-ness}}$ and $\mathcal{V}_{\overline{sup.}}$. form *clusters*, i.e.: $\forall X \neq Y \in \{\text{-ity}, \text{-ness}, \text{sup.}\}$. $\mathcal{S}(X) > \mathcal{S}(X, Y)$ (H_1) $H_2: \mathcal{V}_{\xrightarrow{-itv}}$ is closer to $\mathcal{V}_{\overline{sup}}$ than $\mathcal{V}_{\xrightarrow{-ness}}$ is, i.e.: S(-ity, sup.) > S(-ness, sup.) (H_2) Prior to testing, the embedding (GloVe or fastText) dimen-

similar [3].

- *Embeddings have been shown to encode morphological op*erations, such as comparative or superlative affixation, as stable geometrical translations defined as the difference between the affixed word-vector and the word-vector itself [4].
- We argue that the contrast between *-ity* and *-ness* affixation w.r.t. blocking is encoded as a configuration whereby -ity is on average closer to sup. (vector of the related suppletive transformation) than -ness is.

Figure 1: Morphological operations translate into systematic geometrical translations in a 2D-cosine-PCA-reduced space (GloVe embedding)


- sion was reduced twice using PCA:
 - 1. Reduction based on the word vectors from the dataset (base words, plus their suffixed or suppletive counterparts).
 - 2. Reduction based on the transformation vectors $(\overrightarrow{-ity}_{h}, \overrightarrow{-ness}_{b}, \overrightarrow{sup}_{h})$ computed in the intermediate space.
- > Dimension was reduced to 39 for GloVe and 28 for fastText.
- $H_1 \text{ and } H_2 \text{ yielded significant } p \text{-values (cf. Tab. 1). }$
- H_2 is corroborated by Tab. 2 which shows higher clustering scores (*-ed cells) between the -ness and sup. clusters as opposed to the *-ity* and *sup.* clusters.

	Similarities compared	fastText	GloVe	Score	fastText		GloVe	
	$\mathcal{S}(\text{-ness}) / \mathcal{S}(\text{-ness}, \text{-ity})$	1.2e-16	2.1e-6		sup./	sup./	sup./	sup./
H_1	$\mathcal{S}(\textit{-ness})$ / $\mathcal{S}(\textit{-ness}, sup.)$	0.	0.		-ness	-ity	-ness	-ity
	S(-ity) / S(-ity, -ness) S(-ity) / S(-ity, sup.)	4.5e-129	2.3e-83	Silhouette			0.23*	
	$\mathcal{S}(\textbf{-ity})$ / $\mathcal{S}(\textbf{-ity}, sup.)$	2.9e-21	6.7e-10	Calinski-	23.99*	3.77	32.31*	4.40
	$\mathcal{S}(sup.)$ / $\mathcal{S}(sup.,$ -ness)	3.4e-42	3.7e-13	Harabasz				
	$\mathcal{S}(sup.)$ / $\mathcal{S}(sup., -\mathbf{ity})$	4.2e-10	9.0e-4	Davies-	2 0 0 *	2 5 6	2.36*	214
H_2	$\mathcal{S}(\text{-ity}, \text{sup.}) / \mathcal{S}(\text{-ness}, \text{sup.})$	3.9e-5	4.2e-3	Bouldin	5.08	3.30	2.30	3.14

Table 1: *p*-values for H_1 and H_2 (independent) *t*-tests, Holm-Bonferroni corrected for H_1)

1		

 Table 2: Clustering scores for the
-ness /sup. and -ity /sup. cluster pairs.

ontagious_{ii}

(a) Cosine smilarity matrix of -ness -vectors vs sup. vectors

(b) $\overrightarrow{-ity}$, $\overrightarrow{-ness}$, and $\overrightarrow{sup.}$ vectors in a 2D-reduced space (cosine PCA)

Figure 2: Evidence for a clustering of the vectors corresponding to the 3 kinds of transformations at stake (H_1) , and for differences in cluster proximities (H_2)

Conclusion

- la Word embeddings distinguish between L1 (-*ity*), L2 (-*ness*) and suppletive operations.
- L1 operations are closer to the latter than L2 operations are.
- **Chain and a set of the set of th** semantic competition, and motivates the L1 / L2 distinction.

Aronoff. M. Word in Generative Formation Grammar. 1976. Piotr Bojanowski et "Enriching Word Vectors with Subword Information". In: arXiv:1607.04606 (2016). 🦢 [3] Daniel Jurafsky and Martin H. James. Speech and language processing. 2000. [4] Jeffrey Pennington, Richard Socher, and Christopher D Manning. "Global Vectors for Word Representation.". In: EMNLP. 2014. 🦢

Adèle Hénot-Mortier

mortier@mit.edu

Massachusetts Institute of Technology

